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MagLIF uses preheat, magnetic insulation and

Maénetization
D, gas ~ mg/cc

10-30 T, 3 ms risetime .
Laser heating

Multi-kJ, TW ZBL laser
Heats gas to ~100’s eV

Recently achieved >10"3 DD neutrons
En > 1kJ, Py >1Gbar
Tburn "’3 keV

Slutz et al., Phys. Plasmas 17, 056303 (2010)

adiabatic compression to achieve high pressure

0.8
0.6}
0.4}

02F

At ~ 50 ns Phusion

Pyip

Compression

Lend ’

time () ) « 10:7

Laser heating allows high pressures to be achieved
with low implosion velocity (<100 km/s)

*Preheat energy 1s contained during implosion via
magnetic insulation

*Flux compression allows confinement of fusion
products with low fuel pR

*Long dwell time between preheat and stagnation
makes us sensitive to early time mix



Mix is known to occur, but the total amount and
‘% relative contributions from potential sources is poorly
understood Co coatings used to analyze window and cushion

Z3083 — with DPP

mix
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Harvey-Thompson et al., Phys. Plasmas (accepted)



We have analyzed a series of experiments that isolate
s | the effect of mix from the cushions

No DPP, 10 mm tall target, 1.7 ym thick window 60 PSI D, fill

©
: ——
- - Z Shot # Cushion Epy YpD (:EQU%) Y., T;
S 10" 4 Material [kJ] x10'2 ] [keV]
3 22707 Al 0.3+1.8 0.3 3.1 1.5
Z oo T 22708 Al 0.4+2.3 0.2 3.2 1.3
Q 10" - 22758 Al 0.4+1.8 0.3 6.1 1.6
' ' ' 22985 Al 0.6+2.1 0.2 1.8 1.4
22839 Be 0.4+2.3 3.2 13.5 2.3
20 - 22977 Be 0.4+2 3.0 9.7 2.5
+ + 22979 Be 0.3+1.8 1.7 4.3 2.2
o 10 4 T+— *Increased neutron yield is strongly correlated with higher temperatures
o 7 1
i ] *Increased x-ray yield relative to neutron yield is strongly correlated with
> lower temperatures
5 - : : : : : :
*Be cushion experiments (magenta) are clustered in the higher yield, higher
1 T, lower x-ray yield range
+ Al +
<4 Be ; * Al cushion experiments are clustered in the opposite space
2 % 2 3 * All strongly suggests cushion mix in the Al case is a major contributor to the

degraded performance
lon Temperature [keV]
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In this configuration there is a significant difference

in performance between the Al and Be cushion cases

20 A

lon Temperature [keV]

No DPP, 10 mm tall target, 1.7 ym thick window 60 PSI D, fill

Z Shot # Cushion Epru YpD (:EQU%) Y., T;

Material [kJ] x 102 [J] [keV]
22707 Al 0.3+1.8 0.3 3.1 1.5
22708 Al 0.4+2.3 0.2 3.2 1.3
22758 Al 0.4+1.8 0.3 6.1 1.6
22985 Al 0.6+2.1 0.2 1.8 1.4
22839 Be 0.4+2.3 3.2 13.5 2.3
22977 Be 0.4+2 3.0 9.7 2.5
22979 Be 0.3+1.8 1.7 4.3 2.2

*Increased neutron yield is strongly correlated with higher temperatures

*Increased x-ray yield relative to neutron yield is strongly correlated with

lower temperatures

*Be cushion experiments (magenta) are clustered in the higher yield, higher

T., lower x-ray yield range

Al cushion experiments are clustered in the opposite space

* All strongly suggests cushion mix in the Al case is a major contributor to the

degraded performance
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We have developed an analytic hotspot model to
analyze and interpret these results

Model the stagnation as a 1D isobaric cylinder

Prescribed temperature profile

T (solid)/gp (dashed)

0.8 |

Model Parameters

*In order to infer the stagnation parameters, we
must account for the x-ray and neutron emission

? consistently
HS
Vs By defining an isobaric cylinder with a prescribed
Finixs Zanix (physically motivated) temperature profile
o | (T.=T,)we can calculate all of the required
e diagnostic outputs
_ 2 ot (Z) gFF e~/ Te
Py—Aijl’ﬂ'PHSB ’ /V. (1+ 2 Zf} T5/2 dV
HS

1 <O"U>DD
Yom = — P2 / dV
TR ) T ()P
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Using the available data we can completely constrain
9 I the quantities required to infer bulk stagnation pressure
and mix fraction

Exposure

*Hotspot Volume:

B . % -Burn Duration:
o2 4000 *Neutron Yield:

*Burn Temperature:

Monochromatic X-
ray Imaging

0.5

Radial Distance [cmi]

LI 12
Yiop = 3.2 x 104 + 20%
6 w2838 ¢ 20 mils Kapton e A ’ . .
T I TT T T ] N
= |
= I : X-ray Power 3 keV
= 4t , =
= | to=1.6ns
% ' Neutron Spectrum
<A P TWIUM — 1.9 s and Yield
5 2 I =
=% 11
11
1.1,
3.095 3.1 3.105 3.11 107
Time [ps] 14 16 1§ 2 22 24 1% 5
Energy [MeV

I I Em B



10 I the quantities required to infer bulk stagnation pressure
and mix fraction

Axial Distance [cm]

Using the available data we can completely constrain

Exposure

0.5

00000

DDDDD

Monochromatic X-
ray Imaging

Radial Distance [cmi]

PCD Signal [V]

w2830 ¢ 20 mils Kapton
- TT T -

*Hotspot Volume:
*X-ray Yield:
*Burn Duration:

*Neutron Yield:

Neutron Spectrum
and Yield

6 ]
(.
| X-ray Power
Tdo=16ns |
5l PRATPWIIM — 1.0 18]
11
11
11
1.1,
3.095 3.1 3.105 3.11
Time [ps]

VHS :|:O'V

*Burn Temperature:

I I Em B



Axial Distance [cm]

Using the available data we can completely constrain
11 I the quantities required to infer bulk stagnation pressure
and mix fraction

Exposure

00000

*Hotspot Volume:Vus £ ov

DDDDD

-X-ray Yield] Ypcp

*Burn Duration|: T, £ 0,

*Neutron Yield:

4000

2000

*Burn Temperature:

Monochromatic X-
ray Imaging

Neutron Spectrum
PATWIIM — 1.0 ns] and Yield

l I Em B



Radial Distance [cmi]

PCD Signal [V]

Axial Distance [cm]

Using the available data we can completely constrain
12 I the quantities required to infer bulk stagnation pressure
and mix fraction

Exposure

0.5

w2830 ¢ 20 mils Kapton
- TT T -

*Hotspot Volume:Vus £ ov

*X-ray Yield:Yrcp
*Burn Duration:m, = o,
*Neutron Yield: YDD

2000

‘Burn Temperaturel . + o

Monochromatic X-
ray Imaging

]
X-ray Power
4t . R
+o=1.6ns
— & Neutron Spectrum

Sl FWIIM — 1.9 ns] and Yield

3.095 3.1 3.105 3.11 10
Time [us] 14 16 18 @ 22 24 26 18
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I I Em B



Using the available data we can completely constrain
13 I the quantities required to infer bulk stagnation pressure

and mix fraction

Exposure

Axial Distance [cm]

0.5

— 12000

— 10000

2000

Monochromatic X-
ray Imaging

Radial Distance [cmi]

w2830 ¢ 20 mils Kapton
6 : S— —
LAl
= [\ | X-ray Power
Z 4L R
= 4 +o =1.6 ns T
@ Il
@ PR e N
82_ o WM — 1.0 na]
& F1on
F1on
0 Ll
3.095 31 3.105 311
Time [us]

*Hotspot Volume:Vus £ ov
*X-ray Yield:Yrcp

*Burn Duration: ™, & o
*Neutron Yield¥pp

*Burn Temperaturé: + or

— Axial [Tm)
—— Radial [11.5)
Ti=2.3% 0.3 keV

,()Rg :|:O'pR

Neutron Spectrum
and Yield

Liner areal density taken as a nominal value
from spectroscopic measurements*

*Hansen et al., Phys. Plasmas 22, 056313 (2015)




By sampling the space of uncertain input parameters we
determine the maximum likelihood solution for pressure and
mix

14

Likelihood

Likelihood

P(x|m, A) = exp ( -2 (E(Hgll_; :z:i)2>

7 (A

prior

*The likelihood is defined as the
probability of observing the 10 -
measurement given a particular set of
model parameters and our prior
knowledge of the system

Be Mix [%]

*This method allows us to efficiently
sample a wide range of parameter 47
values, constrained by additional |
measurements Likelihood

.Correlatlons are Contalned In the .D.U{—l 0.I25 0.530 ﬂ.'IT5 l.[l]ﬂ l.l25 ﬂ.'ﬂ 052
I|kel|h00d d|Str|but|On Pressure [Ghar| Likelihood



- ‘ This analysis shows that low mix is strongly
correlated with high pressure and the Al and Be
cushion shots are clustered

S o Al *This analysis determines the
= 204 @® Be stagnation pressure and an
= effective mix fraction (assuming mix
é is 100% Be)
2 104 *The Be cushion shots have, on
5 —© average
m —9 - 3x less effective mix fraction

O.I 4 O.I6 O.I 8 * ~40% higher pressure

Pressure [Gbar] ‘The average hotspot energy is ~50%

higher in the Be cushion experiments
3 3
<E§IS> — <§PH5VH5> ~ 7.6 kJ <E§g> — <§PHS [/HS> ~ 11.4 kJ



Axial Position [mm]

We can use the similarities between the Al and Be
experiments to deconvolve the mix sources from the
integrated results

Al Cushion Be Cushion

22707 22985 22839 22979 *The morphology and evolution of

- stagnation appear to be very similar
between the high mix and low mix
experiments

*‘Volumes are the same to +/- 20%

*Toum 1S the same to +/- 10% (measured with
X-rays)

*Laser pulses and LEH windows are
nominally identical

-0.3 0 0.3 -0.3 0 0.3 -0.3 0 0.3 -0.3 0 0.3
Radial Position [mm]

*Radiation losses are the only term
significantly modified by mix



Exploiting these similarities we can break the mix
7 contribution into three sources and constrain each

Nw = (500 pm)? * 1.77 pym * njo, ~ 4 x 10'°

Mix total: Window + Cushion + Liner P "
Nfue]:—%8><10

fffFZ%e — waﬁoly | fg’eZ%e + fDde Be Cushion kT

> fw = 0.5+ 0.2%
Al >3 3 Al 3 3 .
feff ZBe fWZpoly + fC ZAI —+ fDZBe Al Cushion

°f,y and fy are assumed to be the same in the two cases Equal cushion scrape-off mass

-2 equations, four unknowns Al _ } Be
* Constrain fy, using the window thickness and laser spot size = 3
* Define a relationship between fractions of cushion mix in each  Equal cushion scrape-off volume
case 1
Al _ — rBe
*The system is fully defined and we can solve for each C 79

contribution using the ensemble averages for f



Summary of contributions from the three potential
8 ¥ sources of mix

LEH
Window

Thic

k: 3.4 pm

Thin: 1.7 gm

Cus

Be or Al

hion:

Aluminu

7.5 0r
10 mm

Beryllium
m Cushion
Cugyon at % mass %
Window 0.5% 0.5 % 1.8 %
Cushion 0.57 % 1.5% 6.7 %
Liner 26 % 2.6 % 12 %




Summary of contributions from the three potential
¥ sources of mix

Aluminu

C= Beryllium
Window m Cushion
Thick: 3.4 pm Clﬁh’?n at % mass %
Thin: 1.7 gm \
Window 0.5 % 0.5% 1.8 %
Cus
Be or Al Cushion 0.57 % 1.5 % 6.7 %
Liner 2.6 % 2.6 % 12 %




Summary of contributions from the three potential
20 ¥ sources of mix

Aluminu

C= Beryllium
Window m Cushion
Thick: 3.4 pm Clﬁh’?n at % mass %
Thin: 1.7 gm
\ Window 0.5% 0.5% 1.8 %
Cus
Be or Al Cushion 0.57 % 1.5 % 6.7 %
Liner 2.6 % 2.6 % 12 %




Summary of contributions from the three potential
sources of mix

| Aluminu Beryllium
LEH el m .
Window Cushion
Thick: 3.4 | Cughion at % mass %
Thin: 1.7 gm =
Window 0.5 % 0.5 % 1.8 %
7.5 or
Cus m .
Be or Al \\ Cushion| 0.57 % 1.5 % 6.7 %
Liner 2.6 % 2.6 % 12 %
'4_ *When cushions are made of Al, they overwhelmingly dominate the degradation
@ *Liner accounts for >50% of the mix (by atom)

. Stimplet_Z3 scaling suggests liner mix and window mix are comparable in terms of losses at
stagnation

* Window mix is almost certainly worse than liner mix since it is introduced earlier

I I Em B



How much impact does the observed mix fraction
2 1 have on target performance?

1.00 Frrreerees:

010}

0.01

Kr
YOC = Aexp(—auxy

0.1

1.0

xi = (fi27)/(fBe Zie)
Yi/Ype = Aexp(—ax;)

*Using calculations for pre-mix YOC from Slutz et al. we back out the trend under various assumptions

;g -—-—’- ......... s.\.\
—; L A A el W
o YD/ YBe N
0 PR\
> \ \'\
10.0 g @ eq. mass \ \ \
-1 | @ eq. volume Ya1/Yae ¥*
1071 @ total w1/ # \!
10~ 3 10™2 1071 10° 10’

Scaled Mix Fraction (f Z3)/(fgeZ2,)

*We find that replacing the inferred cushion mix with D gives only 15—25% increase in yield

*Removing the entire observed effective mix fraction gives ~3x increase in yield

*Suggests that Be cushion mix in thin window, tall target, unconditioned beam case is not severely
limiting performance, but overall mix is

Slutz et al., Phys. Plasmas (accepted)



23 1 Conclusions and Future work

*We find that mix is a significant factor in determining target performance

* When the cushion is made of Be instead of Al yield was increased by ~10x, ion temperature by
~40% and pressure by ~40%

*Mix from the interaction with the laser (cushion + window) accounts for <50% of the
observed total

*Here we have inferred bulk averaged quantities, but we know there is significant
variation along the stagnation column

» We are undertaking a detailed analysis of the data that attempts to account for 2D and 3D
variations using the Bayesian Analysis*

* We are working on incorporating 1D neutron imaging into the analysis**
* A high fidelity nuclear burn history measurement would be a valuable addition

*We expect that mix from different sources will be distributed differently. We will address
the radial and axial distributions of mix as part of the ongoing effort

*NP11.00138: Patrick Knapp (Wednesday)
**GP11.00094 : Jeremy Vaughan (Tuesday)
**GP11.00132: Dave Ampleford (Tuesday)




