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Goals3

•Develop a methodology for integrating multiple, disparate diagnostics on a 
single experiment to better constrain the stagnation conditions and 
uncertainties
• Leverage the power of multiple constraining measurements

•Use a physically-motivated model to interpret diagnostic data subject to 
physics-based constraints
• Allow our intuition and knowledge to play a role in determining the solution (but not 

fully!)
• The emphasis of the model is on clarity and transparency of parameters  give us 

answers that are easy to interpret

•Use a formalism that allows quantitative comparison of different candidate 
physics models
• If we introduce a new model of the experiment we must be able to quantify its utility, 

particularly if it is more complicated 

•Use a formalism that enables diagnostic designs to be tested for their utility
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•Laser heating allows high pressures to be achieved with 
low implosion velocity (<100 km/s)

•Preheat energy is contained during implosion via magnetic 
insulation

•Flux compression allows confinement of fusion products 
with low fuel rR

•Long dwell time between preheat and stagnation makes us 
sensitive to early time mix

• D2 gas ~ mg/cc 
• 10-30 T, 3 ms risetime

• Multi-kJ, TW ZBL laser
• Heats gas to ~100’s eV

Slutz et al., Phys. Plasmas  17, 056303 (2010)

Recently achieved >1013 DD neutrons
Eph > 1 kJ,  PHS > 1 Gbar
Tburn ~3 keV

MagLIF uses preheat, magnetic insulation and adiabatic 
compression to achieve high pressure



We have developed a forward model that allows 
direct, quantitative comparison of the data with 
synthetic diagnostics
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Assumptions:
• Each slice has its own independent parameters 

characterizing a static, isobaric hot spot surrounded by 
a liner

• Ideal gas EOS:
• All elements have same burn duration
• Electron and ion temperatures are equal
• X-ray emission is dominated by continuum (BF & FF)

*Ballabio et al., NUCLEAR FUSION, Vol. 38, No. 11 (1998)

Basic Model Parameters

Global/hyper Parameters

X-ray Emission:

Neutron Emission:

*



Analysis is performed using Bayesian Parameter estimation 
to determine the most likely hotspot parameters

Bayesian Hierarchical Graph Model
Input Parameters

Synthetic 
Observables

Physics Model

Experimental 
Observables

• Bayesian parameter estimation is a well-established technique used in a variety of fields*
• Analysis can be used to infer most likely parameters, correlations between model 

parameters and/or data
• Can compute value of information to determine which data constrain which parameters 

and how well

*U. Von Toussaint, Rev. Mod. Phys. Vol. 83 
(2011)



Bayesian Parameter estimation is an iterative process 
that updates our assumptions based on observables7

Proposed Stagnation Conditions

Synthetic Data

Experimental Data

Prior Distribution
Posterior Distribution

= 

Model Parameters Outputs/Benefits:
• most likely 

parameter values
• confidence intervals
• correlations
• Value of information

Bayes’ Theorem Likelihood



Optimization Procedure8

• Prior distribution is sampled to build the prior 
distribution of hotspot and diagnostic realizations

• Levenberg-Marquardt optimization (with optional 
multiple starts) used to determine the MAP solution
• By assuming a Gaussian form this solution 

uniquely determines the posterior

• MCMC sampling used to refine the solution and 
determine if posteriors show any non-linear 
behavior

• Posterior distribution is sampled to form the 
posterior diagnostic and model parameter statistics 
(e.g. mean, confidence interval, etc.)



Combating bias introduced via the prior 9

•In the case of a sufficiently peaked 
prior, and/or sufficiently weak pressure 
on the solution, the prior can bias the 
resulting solution

•If the prior is low, the solution will be 
low, and high if the prior is high

•A simple iteration over the procedure 
will effectively remove this bias, 
recovering the solution as if a 
constrained uniform prior were used

•The iteration loop simply replaces the 
prior mean with the posterior mean 
from the previous iteration, leaving the 
prior standard deviation untouched

•The loop consistently converges in just 
a few iterations, make this a cheap and 
effective means of removing bias

Glinsky et al., Bayesian inversion whispers, THE LEADING EDGE MAY 2008
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Input

InputPost

1D model Test case10

•Constructed a test case that exercises multiple parameters 
simultabneously

•Prescribed variations in P, T, and radius (all accurately determined)
•Mix and liner areal density are determined, but with large confidence 
intervals



Method has been successfully tested on 1D GORGON 
simulation data
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•The inversion is able to recover a high fidelity solution to the 1D GORGON 
simulation

•Inferred quantities correspond closely to simulated values at peak burn
•Inferred areal density is low, likely due to use of cold opacity in model

What is the meaning of the model parameters in the presence of 
significant time evolution?



Running inversion on 3D Gorgon data reveals 
significant bias in the solution12

•Integrated diagnostic data is matched 
within uncertainties

•However, biases and excessive 
correlations appear in the solution 
parameters

•Poor fits to the crystal imager profiles are 
observed in certain areas

inferred parameters GORGON



The biases are believed to be related to the 
three dimensional nature of the stagnation13

•Inability to match asymmetric indicates 
deviation from cylindrical symmetry

•This puts an artificial bias on the volume, 
which cascades through the correlations 
in the model and diagnostics to bias all 
quantities

•The large, anti-correlated swings in areal 
density and temperature are symptoms 
of this

Visualizations from GORGON Calculation at Peak Burn

Synthetic Image

Density Slice

Density Map

Cross Section

Liner

Fuel

Significant asymmetries are seen in the fuel morphology



We have developed two 3D models with 
different shape parameterizations to overcome 
this bias
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• Temperature 
parameters 
control the 
relative peaks of 
the two modes

• Radius 
parameters 
control the 
relative size of 
each mode

Super-Gaussian KernelPower-Law Kernel

Temperature profile defined by one of two kernels



The addition of shape and CM shift parameters 
requires that we have an additional viewing 
angle in our diagnostics

15

 Original model treats 
TIPC as a 1D imager

 Now, we exploit the 
full images as well 
as the viewing 
angles of the crystal 
imager and TIPC 
constrain the new 
parameters

TIPC

Crystal Imager
North

-90ᵒ

36ᵒ

Top view of Load Region

Target

But TIPC has much worse resolution than the crystal imager

TIPC

crystal
imager

North

-90ᵒ

36ᵒ

Hotspot Cross-section



Legendre Polynomial expansion allows us to 
add a series of “shape” parameters to each 
slice16

•We maintain the isobaric assumption and the same 
radial temperature profile, but R varies as a function 
of theta

•This minimally changes the hotspot model
•Unfortunately, this significantly complicates 
calculation of diagnostics

increasing P
1  & P

2

 minimum perpendicular 
distance to the boundaryd(q): 



The algorithm is able accurately match the shape 
parameters using the Legendre expansion17

•The shape parameters (P1 and P2) are recovered exactly 
•Algorithm is unable to simultaneously recover all parameters

• Rotation angle is particularly difficult
• This may be due to the use of an incomplete symmetry group

•Seeking a modified parameterization that will be better suited to 
inversion



Description of the Gaussian KDE model

•New model allows two independent modes 
to be separated and positioned arbitrarily

•Each mode has a temperature profile 
specified by either 
• Power law (as in original case)
• Super-Gaussian (p=1 corresponds to Gaussian, 

shown)

•In addition to original 5 parameters (Tc, PHS, 
RHS, fmix, ᵰ� Rᵌ� ) there are 6 new parameters
• temperature ratio (defined as the log of the 

temperature ratio)
• radius ratio (defined as the log of the radius 

ratio)
• XCM
• ᵮ� X

•As with the Legendre expansion, TIPC and 
Crystal Imager must be simultaneously used 
as full images, exploiting their near 
orthogonal views 

•Currently NO azimuthal variations in liner 
areal density allowed
• Need to take a hard look at this

Temperature Maps



Parameterizing a hotspot using a sum of 
circular kernels19

•Allows arbitrary number of kernels
•kernel radius and temperatures are defined as 
ratios to 0th kernel parameters

•CM of ensemble is calculated as the emission 
weighted CM (~R2T)

•for 2 kernels, 6 parameters are required beyond 
the cyl. symmetric case

•11 parameters per slice + scale factors and 
registration ⇒ >225 parameters to be solved for 
with 2 kernels and N = 20

•4 parameters are required for each additional 
kernel

Model Parameters

Defining the Parameters for each Kernel

Super-Gaussian Kernel

Power-Law Kernel



A test case with a single-mode KDE shows that the 
stagnation conditions as well as the CM shift can be 
recovered accurately
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Utilizing two diagnostic views, 
The CM shift of the column 
proves to be easy to unfold



Preliminary Tests show that the algorithm is 
able to accurately unfold the shape and 
orientation of the plasma
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•The inversion recovers all parameter exactly for three of 
the four slices

•There is confusion with the case where both modes 
overlap

•This inversion required use of the mean-iteration to 
overcome bias introduced by the priors in order to obtain 
an acceptable solution



Preliminary Tests show that the algorithm is able to 
accurately unfold the shape and orientation of the 
plasma
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•In the case where two identical modes overlap, there is a lack of 
determinacy

•Due to the priors, the algorithm wants the solution to have two 
asymmetric modes

•This throws off the inferred temperature, radius, and peak emission in 
the images

•However, the pressure, areal density and mix fraction are still 
accurately recovered

peak emission in profile is off



We are developing proxy models to simplify 
complex calculations and incorporate more 
physics in the model
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•BR (the magnetic field-radius product) is a critical 
burn parameter in MIF

•This can be measured via secondary DT neutron 
measurements, but the model is too expensive to 
implement inline

•We are training a Gaussian Processes model 
using DAKOTA to predict the DT yield and spectra 
based on model parameter values 

training Data

Predictions With C.I.’s

Physics Model

G.P. Regressor



Conclusions and future work24

•The KDE expansion is extremely promising, with very encouraging early 
results, but is currently limited to Gaussian temperature kernels

•The Legendre expansion needs more work to perform properly, we are 
investigating alternative expansion methods

•This work highlights the need for a second, quasi-orthogonal high 
resolution imager
• We have built in the ability to incorporate a second imager for testing
• We will evaluate its impact on the synthetic and 3D GORGON test cases

•We are working on adding X-ray spectroscopy diagnostics to the model
• This will likely require further surrogate modeling

•Once mature, this tool will be used to 
• Develop a deeper understanding of MagLIF through mining a large database of 

shots and looking for correlations and dependencies in the database
• Guide diagnostic development
• Guide experimental design


