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Outline of the Presentation
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• Purpose and genesis of the study of the ”near field”.
• Cask behavior in accidents
• Need for a “near field” model
• First approximation to a “near field” model.
• Next steps.



Basic cask model for RADTRAN
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Probabilities of an accident

Accident severities are categorized using an event tree with conditional 
probabilities.

 For trucks, the event tree was developed at Sandia National Laboratories.
 For rail, the event tree was developed at the Volpe National Transportation 

Systems Center.
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Rail-lead cask impact analysis
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 Side orientation 90 mph impact onto a rigid target
 Only cask and orientation resulting in a leak-path 

 no leak-path if fuel is loaded in an inner welded canister

 Side orientation 60 mph impact onto a rigid target
 No leak path, but
 The risk assessment assumes impacts into hard rock (5% of route wayside surface) 

above 50 mph result in a leak-path
 Side orientation impacts at any recorded accident velocity onto targets 

softer than hard rock do not result in a leak-path



Cask Illustrations

 Each cask represents a type (Rail-Lead, Rail-Steel, Truck-DU)
 Casks of the same type would perform similarly 7

Hi-STAR 100
(Rail-Steel)

shown without
impact limiter

GA-4 (Truck-DU)

NAC-STC
(Rail-Lead)



Atmospheric Dispersion



Dispersion Footprint



Types of exposed populations

 Residents along the route
 Occupants of vehicles sharing the route
 Residents near stops
 People sharing the stop
 Crew of the transport vehicle (truck or train)
 Inspectors
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Finite 
element 
model of 
the rail-
lead cask
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Finite element mesh of the rail-lead 
cask
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Release fractions
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  Cask Orientation Side Side

 
Rigid Target 

Impact Speed, 
kph (mph)

193 (120) 145 (90)

  Seal elastomer elastomer

Cask to 
Environ­ment 

Release Fraction

Gas 0.80 0.80
Particles 0.70 0.70
Volatiles 0.50 0.50

CRUD 0.001 0.001

Rod to Cask 
Release Fraction

Gas 0.12 0.12
Particles 4.8x10-6 4.8x10-6

Volatiles 3.0x10-5 3.0x10-5

CRUD 1.0 1.0

  Conditional 
Probability 1.79x10-11 3.40x10-10



Near Field Simulation Domain
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Simulation Conditions
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• Temperature change of -0.1 deg K from the bottom to 
the top of the domain 

• Bluff body wake generation induced geometrically, by 
putting a small re-entrant corner on the cask,

• Change in the horizontal wind velocity of 0.1m/s with 
altitude upwind of the cask. 

• Ground surface upwind of the cask: zero shear wall
• Ground surface downwind of cask:  no-slip wall & 

particle traces terminate. 
• 750K inside the cask from radioactive decay → gas 

pressure of 2.62 atm (ideal gas) 
            



Simulation Conditions -- continued
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• One-cm gap in cask in 2D:  extended to ±∞ in z-dir
• 0.662 gm PuO2 in one micron diameter particles 

initially inside the cask to simulate a potential worst-
case dose.

• Lagrangian simulation of particle motion:  inert, 
conducting, turbulent dispersion used?

• The ambient wind field, always present, prevails once 
outgassing has become relatively  weak.

            



Mesh used (X, Y in meters) 
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Particle # density during choked flow regime (X, Y in meters)
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Pressure field during choked flow regime (P in psi with ‘0’ = 1atm)
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Particle # density near end of outgassing (X, Y in meters)
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Pressure field near end of outgassing (P in psi with ‘0’ = 1atm)



Fractions of Particles Trapped and 
Escaped
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Implications for RADTRAN
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• A 3D model is needed!  1cm gap → 1cm hole & 3D bluff 
body wake.

• Material “caught in wake” is modeling artifice caused by 
constant wind.  Most of this will escape to the far field.

• There is no need to model a transition between near and 
far field.

• Wind speed is already a variable parameter in RADTRAN

• The fraction by which the far field dose is reduced can be 
coupled to the wind speed.

• A range of wind directions relative to the cask is needed.


