
Randomized Functional Sparse Tucker Tensor for
Compression and Fast Visualization of Scientific

Data
Prashant Rai

Combustion Research Facility
Sandia National Laboratories

Livermore, USA
pmrai@sandia.gov

Hemanth Kolla
Scalable Modeling and Analysis

Sandia National Laboratories
Livermore, USA

hnkolla@sandia.gov

Lewis Cannada
Scalable Modeling and Analysis

Sandia National Laboratories
Livermore, USA

canlewi@sandia.gov

Alex Gorodetsky
Aerospace Engineering
University of Michigan

Ann Arbor, USA
goroda@umich.edu

Abstract—We propose a strategy to compress and store large
volumes of scientific data represented on unstructured grids.
Approaches utilizing tensor decompositions for data compression
have already been proposed. Here, data on a structured grid
is stored as a tensor which is then subjected to appropriate
decomposition in suitable tensor formats. Such decompositions
are based on generalization of singular value decomposition to
tensors and capture essential features in the data with storage
cost lower by orders of magnitude. However, tensor based data
compression is limited by the fact that one can only consider
scientific data represented on structured grids. In case of data on
unstructured meshes, we propose to consider data as realizations
of a function that is based on functional view of the tensor thus
avoiding such limitations. The key is to efficiently estimate the
parameters of the function whose complexity is small compared to
the cardinality of the dataset (otherwise there is no compression).
Here, we introduce the set of functional sparse Tucker tensors and
propose a method to construct approximation in this set such that
the resulting compact functional tensor can be rapidly evaluated
to recover the original data. The compression procedure consists
of three steps. In the first step, we consider a fraction of the
original dataset for interpolation on a structured grid followed by
sequentially truncated higher order singular value decomposition
to get a compressed version of the interpolated data. We then
fit singular vectors on a set of functional basis using sparse
approximation to obtain corresponding functional sparse Tucker
tensor representation. Finally, we re-evaluate the coefficients of
this functional tensor using randomized least squares at a reduced
computational complexity. This strategy leads to compression
ratio of orders of magnitude on combustion simulation datasets.

Index Terms—data compression, functional tensors, tucker
decomposition, sparse approximations, randomized least squares

I. INTRODUCTION

Functional tensors are based on interpretation of high di-
mensional functions as tensors and their decomposition in sev-
eral tensor formats as particular approximations. Consequently,
functional tensors have been studied and applied for sampling
based approximation of high dimensional functions in cases
where the number of available function evaluations is small.
Several functional tensor formats have been studied for various
applications e.g. [14], [11], [19], [18]. These approaches rely

on linearity between the parameters of the low-rank format and
the output of the function. Utilizing this multilinear parame-
terization, they convert the low-rank function approximation
to one of low-rank tensor decomposition for the coefficients
of a tensor-product basis.

The novelty of the present paper, in contrast, is aimed at
detecting low rank structure in the large volumes of data
in order to obtain a low complexity functional tensor repre-
sentation for a small loss in accuracy. As opposed to high
dimensional function approximation using tensors in earlier
works, high dimensionality does not come from the number
of inputs to the function but from the number of data points
required to be processed in order to obtain a functional tensor
form. This functional tensor, stored as a surrogate at a fraction
of cost of the original dataset, can be rapidly evaluated to
recover accurate approximations of the data. We note that the
compressed functional form can act as a preview of the full
dataset, which may reside on long-term storage and need not
replace the original dataset. In this paper, we consider the
functional sparse Tucker representation of the data.

Several compression methods largely focus on compressing
local structure with very little loss in precision. Examples
of such methods include multivariate volume block data
reduction by taking advantage of local multiway structure
[17], compression of data in local blocks [23], [12]. Tensor
based methods, in contrast, aim at detecting global structure
in the data. It does not process the data in blocks but rather
considers the data in its entirety. In this work, in order to take
advantage of tensor based compression, we first interpolate
the unstructured data on a structured grid followed by its
Tucker decomposition [27]. Singular vectors with truncated
rank for each mode thus obtained are represented as functions
on a suitable basis using least squares with sparsity constraints
thus resulting in a functional sparse Tucker representation of
the dataset. Finally, to compensate for the effect of Tucker
compression on interpolated data, we re-estimate the compo-
nents of the core tensor by solving a randomized least squares
problem using data in the original dataset.

The manuscript is organized as follows. We introduce and
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formalize the notion of functional sparse Tucker tensors in
section II. In order to construct approximations in this set, we
review least squares with sparse regularization in section III.
We then present our construction algorithm in section IV and
illustrate it on simulation datasets in section VI with a short
conclusion in section VII.

II. FUNCTIONAL SPARSE TUCKER TENSORS

The key idea in this work is to represent the dataset as
realizations of a multivariate function

u(y1, . . . , yd) =

n1∑
i1=1

· · ·
nd∑
id=1

βi1,...,idφ
(1)
i1

(y1) · · ·φ(d)id (yd),

where φ(k)ik
, 1 ≤ k ≤ d are basis functions (e.g. polynomials,

wavelets...). The number of expansion coefficients βi1,...,id are∏d
k=1 nk thus manifesting the curse of dimensionality if nk

or d or both are large. In such cases, we instead represent the
data as realizations of a Tucker low rank approximation ũ of
u where

ũ(y1, . . . , yd) =

r1∑
j1=1

· · ·
rd∑
jd=1

αj1,...,jdw
(1)
j1

(y1) · · ·w(d)
jd

(yd).

(1)

Storage of ũ in (1) require
∏d
k=1 rk coefficients and∑d

k=1 nkrk expansion coefficients of w(k)
jk

(yk), 1 ≤ jk ≤
rk, 1 ≤ k ≤ d such that

w
(k)
jk

(yk) =

nk∑
ik=1

wkik,jkφ
(k)
ik

(yk). (2)

In additional, in order to gain advantage from sparsity based
regularization, we also constraint the number of non zero
coefficients in (2). In the following, we formalize the notion
of functional sparse Tucker tensors.

We introduce approximation spaces Sknk
with orthonormal

basis {φ(k)j }
nk
j=1, such that

Sknk
=

v(k)(yk) =
nk∑
j=1

vkj φ
(k)
j (yk); v

k
j ∈ R


=
{
v(k)(yk) = φ

(k)(yk)
Tv(k);v(k) ∈ Rnk

}
,

where v(k) denotes the vector of coefficients of v(k) and where
φ(k) = (φ

(k)
1 , . . . , φ

(k)
nk )

T denotes the vector of basis functions.
An approximation space Sn is then obtained by tensorization
of approximation spaces Sknk

:

Sn = S1n1
⊗ . . .⊗ Sdnd

=

{
v =

∑
i∈In

viφi ; vi ∈ R

}
,

where In = ×dk=1{1 . . . nk} and φi(y) = (φ
(1)
i1
⊗ . . . ⊗

φ
(d)
ir

)(y1, . . . , yd) = φ
(1)
i1

(y1) . . . φ
(d)
ir

(yr). An element v =∑
i viφi ∈ Sn can be identified with the algebraic tensor

v ∈ Rn1 ⊗ . . . ⊗ Rnd such that (v)i = vi. Denoting

φ(y) = φ(1)(y1) ⊗ . . . ⊗ φ(d)(yr) ∈ Rn1 ⊗ . . . ⊗ Rnd , we
have the identification Sn ' Rn1 ⊗ . . .⊗ Rnd with

Sn = {v(y) = 〈φ(y),v〉;v ∈ Rn1 ⊗ . . .⊗ Rnd} ,

where 〈·, ·〉 denotes the canonical inner product in Rn1⊗ . . .⊗
Rnd .

Here, we suppose that the approximation space Sn is suffi-
ciently rich to allow accurate representations of a large class
of functions (e.g. by choosing polynomial spaces with high
degree, wavelets with high resolution...). We now introduce
the set of functional sparse tensors.

Let R1 denote the set of (elementary) rank-one tensors in
Sn = S1n1

⊗ . . .⊗ Sdnd
, defined by

R1 =

{
w(y) =

(
⊗dk=1w

(k)
)
(y) =

d∏
k=1

w(k)(yk) ; w
(k) ∈ Sknk

}
,

or equivalently by

R1 =
{
w(y) = 〈φ(y),w(1) ⊗ . . .⊗w(d)〉;w(k) ∈ Rnk

}
,

where φ(y) = φ(1)(y1) ⊗ . . . ⊗ φ(d)(yd), with φ(k) =

(φ
(k)
1 , . . . , φ

(k)
nk )

T the vector of basis functions of Sknk
, and

where w(k) = (wk1 , . . . , w
k
nk
)T is the set of coefficients

of w(k) in the basis of Sknk
, that means w(k)(yk) =∑nk

i=1 w
k
i φ

(k)
i (yk). Correspondingly, we definem-sparse rank-

one subset defined as

R
m-sparse
1 =

{
w(y) = 〈φ(y),w(1) ⊗ . . .⊗w(d)〉;

w(k) ∈ Rnk , ‖w(k)‖0 ≤ mk

}
with effective dimension

∑d
k=1mk �

∑d
k=1 nk (here we

only count the values of the non-zero coefficients and not the
integers indicating their locations). However performing least-
squares approximation in this set may not be computationally
tractable. We thus introduce a convex relaxation of the `0-
“norm” to define the subset Rγ1 of R1 defined as

R
γ
1 =

{
w(y) = 〈φ(y),w(1) ⊗ . . .⊗w(d)〉;

w(k) ∈ Rnk , ‖w(k)‖1 ≤ γk
}
,

where the set of parameters (w(1), . . . ,w(d)) is now searched
in a convex subset of Rn1 × . . .× Rnd .
Finally, we introduce the set of functional Tucker tensors with
multilinear Tucker rank r = (r1, . . . , rd)

Tr =

v =

r1∑
j1=1

· · ·
rd∑
jd=1

αj1,...,jdwji,...,jd ;wj1,...,jd ∈ R1


and the corresponding sparse subset

Tγr =

v =

r1∑
j1=1

· · ·
rd∑
jd=1

αj1,...,jdwji,...,jd ;wj1,...,jd ∈ R
γ
1

 .

In the following, we propose algorithms for the construction
of approximations in tensor subsets Tγr which requires sparse



approximation of functions wkjk(yk). For this purpose, we use
least squares with sparse regularization as described in the next
section.

III. LEAST SQUARES WITH SPARSE REGULARIZATION

A sparse function is one that can be represented using
few non zero terms when expanded on a suitable basis. In
general, a successful reconstruction of sparse solution vector
depends on sufficient sparsity of the coefficient vector and
additional properties (incoherence) depending on the samples
and of the chosen basis (see [7], [13]). More precisely, an
approximation

∑P
i=1 uiφi(y) of a function u(y) is considered

as sparse on a particular basis {φi(y)}Pi=1 if it admits a good
approximation with only a few non zero coefficients. Under
certain conditions, a sparse approximation can be computed
accurately using only Q � P samples of u(y) via sparse
regularization. Given the random samples z ∈ RQ of the
function u(y) at sample points {yq}Qq=1, a best m-sparse (or
m-term) approximation of u can be ideally obtained by solving
the constrained optimization problem

min
v∈RP

‖z−Φv‖22 subject to ‖v‖0 ≤ m, (3)

where ‖v‖0 = #{i ∈ {1, . . . , P} : vi 6= 0} is the
so called `0-“norm” of v which gives the number of non
zero components of v and and Φ ∈ RQ×P the matrix with
components (Φ)q,i = φi(y

q). Problem (3) is a combinatorial
optimization problem which is NP hard to solve. Under certain
assumptions, problem (3) can be reasonably well approximated
by the following constrained optimization problem which
introduces a convex relaxation of the `0-“norm”:

min
v∈RP

‖z−Φv‖22 subject to ‖v‖1 ≤ δ, (4)

where ‖v‖1 =
∑P
i=1 |vi| is the `1-norm of v. Since the `2

and `1-norms are convex, we can equivalently consider the
following convex optimization problem, known as Lasso [26]
or basis pursuit [10]:

min
v∈RP

‖z−Φv‖22 + λ‖v‖1, (5)

where λ > 0 corresponds to a Lagrange multiplier whose
value is related to δ. Problem (5) appears as a regularized
least-squares problem. The `1-norm is a sparsity inducing
regularization function in the sense that the solution v of
(5) may contain components which are exactly zero. Several
optimization algorithms have been proposed for solving (5)
(see [3]). In this paper, we use the Lasso modified least angle
regression algorithm (see LARS presented in [16]) and fast
leave-one-out cross validation error estimate [8] for optimal
sparse solution (corresponding to regularization parameter λ)
which relies on the use of the Sherman-Morrison-Woodbury
formula (see [6] for its implementation within Lasso modified
LARS algorithm). In this work, we have used Lasso modi-
fied LARS implementation of SPAMS software [24] for `1-
regularization.

IV. FUNCTIONAL SPARSE TUCKER USING TUCKERMPI

A. Interpolation on structured grid

Representation of the dataset in functional sparse Tucker
format defined in section II requires estimation of the core
tensor α and univariate functions w(k)

j (yk). If the dataset is
available on a structured grid, it can be stored as a tensor U

which can then be decomposed in Tucker format

U ≈ Ũ = α×1 W
(1) ×2 W

(2) · · · ×dW (d),

where ×k is mode k product of U with a factor matrix W (k) ∈
Rnk×rk . Here, the compression precision is given by

ε =
‖U− Ũ‖F
‖U‖F

,

where ‖ · ‖F is the Frobenius norm. Since the dataset con-
sidered is unstructured, we propose to interpolate the data
on a structured grid. Let us denote the grid size in mode
k, 1 ≤ k ≤ d as Ik and, for the sake of simplicity, consider
that the gird points are equispaced. A structured grid of size
I1×I2 · · ·×Id can thus be obtained. Now, we consider only a
small subset of the original dataset for linear interpolation on
this grid and the interpolated data is stored as a tensor which
is then decomposed in Tucker format. We use TuckerMPI
[4], a parallel C++/MPI software package for compressing
distributed data, for this purpose. Note that TuckerMPI is a
parallel implementation of the sequentially-truncated HOSVD
(ST-HOSVD) [28]. We thus obtain factor matrices W (k), 1 ≤
k ≤ d, the columns of which are realizations of univariate
functions w(k)

jk
(yk), 1 ≤ j ≤ rk.

B. Sparse approximation of singular vectors

We now wish to obtain a functional representation
w

(k)
jk

(yk), 1 ≤ jk ≤ rk, of the singular vectors W (k)
:,jk

such that
W

(k)
ik,jk

are evaluations of w(k)
jk

(yikk ) at grid locations {yikk }
Ik
ik=1

along mode k. For this purpose, we use least squares with
sparse regularization in section III to obtain coefficients on
suitable basis functions. It is well known that singular vectors
are more oscillatory (see for e.g. Figure 3(a)) for higher rank
as they capture high frequency phenomenon in the dataset.
Thus, choice of basis functions for representation of w(k)

jk
(yk)

corresponding to small jk may not be appropriate for the
ones with higher jk. Therefore, in this work, we propose to
construct approximation in two spaces Pp, where Pp is the
space of Legendre polynomials of degree p and Ws,p, where
Ws,p is the space of multi-resolution wavelets with resolution
s and degree p. We can then choose the approximation that
gives smaller approximation error. We present the overall
compression scheme in Algorithm 1 below.

V. RE-ESTIMATION OF CORE TENSOR USING RANDOMIZED
LEAST SQUARES

Algorithm 1 gives a functional representation of the data in
the sparse Tucker format. The data however was interpolated
on a structured gird to be able to use TuckerMPI for obtaining
the singular vectors. This approach suffers from the limitation



Algorithm 1 Compression of unstructured data in functional
sparse Tucker format
Input: Original dataset, interpolation grid Ik, 1 ≤ k ≤ d,

compression precision ε
Output: Function sparse Tucker tensor core α and coeffi-

cients of w(k)
jk

(yk), 1 ≤ k ≤ d, 1 ≤ jk ≤ rk.
1: Interpolate the data on structured grid of size I1×· · ·×Id
2: Use TuckerMPI to get core tensor α and factor matrices
W (k) for given compression precision

3: for k = 1, . . . , d do
4: for jk = 1, . . . , rk do
5: Approximate w(k)

jk
using components of W (k)

:,jk
in Pp

and Ws,p and estimate error (See section III)
6: Store coefficients of w(k)

jk
corresponding to smaller

approximation error
7: end for
8: end for

that the quality of approximation will depend on the type of
interpolation (e.g. linear or non linear interpolation, number
of points considered for interpolation etc.) on the structured
grid. To overcome this limitation, it is imperative to use the
original dataset to re-evaluate some, if not all, parameters of
functional sparse Tucker tensor. We implement this idea by
re-evaluating the elements of the core tensor using linear least
squares. Let us rewrite (1) as

u(y) = ũ(y) =

R∑
j=1

αjwj(y),

where j = (j1, . . . , jd) such that αj = αj1,...,jd and wj(y) =∏d
k=1 w

(k)
jk

(yk) and R = r1 × · · · × rd. We wish to solve the
regression problem

α̂ = min
α∈RR

‖u−Wα‖22, (6)

where (u)q = u(yq), W ∈ RQ×R is the matrix such that
(W )q,j = wj(y

q) and α ∈ RR are components of the core
tensor reshaped as a vector. Clearly, W is overdetermined
(Q � R), and hence its computation and storage may be
prohibitive in the considered setting. However, sketching and
randomized methods have been used successfully to solve big
linear least squares problems at a much smaller computation
cost [25], [15], [2], [21] and is ideal for application in this
setting.

The key idea here is to transform (6) using random pro-
jection M ∈ RS×R, S � Q, such that an exact solution
to minα‖Mu−MWα‖22 is an approximate solution to the
original problem (6) [29]. Approaches to solve randomized
least squares problems are based on the idea of leverage scores.
The leverage score of rows of W is the norm of the rows of
its left singular vectors and corresponds, in some sense, to
the importance of that row in constructing its column-space.
One can then solve the randomized least squares problem by
sampling rows of W weighted according to the distribution

of the leverage scores. One drawback of this method is that
leverage scores have to be estimated from singular value
decomposition ofW which may be computationally expensive
when R is large. Therefore, we follow the approach in [5],
where we mix W with the intention of evenly distributing
leverage scores across all rows in such a way that one
can sample rows uniformly. Note that this mixing strategy
relates to a more general class of transformations that rely on
approximation quality guarantees provided by the Johnson-
Lindenstrauss Lemma [20]. This lemma specifies a class of
random projections that preserve the distances between all
pairs of vectors with reasonable accuracy in the projected
subspace.

We briefly summarize steps for our problem. Firstly, we
premultiply W by a diagonal matrix D ∈ RQ×Q with random
+1/-1 to spread out the signal in frequency domain [1]. This
is equivalent to flipping the sign of each row of W with
probability 1/2. We then apply a fast mixing operation, here a
fast Fourier transformation, which has the effect of mixing
information across every element of a vector. At the end
of this step, the leverage scores of the resulting matrix are
concentrated about a small value. Finally, we sample S rows
of this matrix with uniform probability. These steps define
the random projection M . Algorithm 2 outlines the steps in
re-estimation of the core tensor.

Algorithm 2 Re-evaluation of the core tensor using Random-
ized Least Squares
Input: Original dataset u, Core tensor α, Functional singular

vectors w(k)
jk
, 1 ≤ k ≤ d, 1 ≤ jk ≤ rk

Output: Re-evaluated Function sparse Tucker tensor core α̂
1: Construct W by evaluating wj at samples in the dataset
2: Multipy W and u with diagonal matrix D
3: Apply a fast Fourier Transformation i.e. FDW and FDu
4: Sample S > R rows uniformly, i.e. SFDW and SFDu,

where S is a sampling matrix
5: Solve α̂ = minα‖SFDW − SFDu‖22

VI. ILLUSTRATION

A. Illustrations

We apply our compression strategy on a data set pertaining
to a direct numerical simulation (DNS) of turbulent com-
bustion. A “statistically planar” (SP) premixed flame [22]
stabilized in homogeneous isotropic turbulence is simulated
using the massively parallel DNS code S3D [9]. A premixed
mixture of methane and air establish a flame that remains
statistically planar and stationary in an oncoming turbulent
flow. The combustion chemistry is described using a chemical
mechanism containing six chemical species. Accordingly, at
each point in the spatial grid and time the solution vector
contains eleven dependent variables describing the full thermo-
chemical state of the flame. The data set is mapped onto a
3-dimensional structured grid comprising 500 grid points in
each spatial dimension, and a total of 400 time snapshots
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TABLE I

SPECIFICATION OF INTERPOLATION GRID SIZE AND TUCKER RANKS
OBTAINED FOR DIFFERENT PRECISION USING TUCKERMPI FOR TWO TEST

CASES

Dataset Interpolation grid size Precision (ε) Size of core tensor

SP3D 500× 500× 300
1.0× 10−2 25× 24× 8
1.0× 10−4 57× 50× 17

SP4D 500× 500× 500× 300 1.0× 10−2 30× 38× 5× 11

are considered. For the illustration of the method, to follow,
we consider two variants of this fundamentally 4-dimensional
data set. In the first case, henceforth referred to as SP3D, we
consider that the data belongs to a three dimensional space,
consisting of two spatial axis and one time axis. The total
number of data points in this set is 7.5 × 107 with total
storage cost of 0.6 gigabytes for double precision. The second
case considers a 4 order tensor, SP4D, which also considers
the third spatial axis, in addition to the ones in SP3D. The
total storage cost of data in this case is 300 gigabytes with
3.75× 1010 data points. In the following, we illustrate results
of SP3D case, and mention that a similar illustrations can be
obtained for SP4D.

In case of SP3D, we interpolate the data on a structured
grid of size 500 × 500 × 300 using only 10% of the data in
the original set and decompose the resulting tensor in Tucker
format using TuckerMPI. Figure 1 shows the decay in the
absolute value of the components of the core tensor α versus
rank (multilinear Tucker rank on horizontal axis is converted to
canonical rank) of SP3D for Tucker decomposition precision
of 1.0× 10−4. We clearly see that there is a fast decay in the
singular values thus indicating strong scope for compressibility
of this dataset. Table I summarizes the interpolation parameters
and multilinear Tucker ranks i.e. size of the core tensor thus
obtained for different decomposition precisions for the two
datasets.
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Fig. 1. Decay of singular values i.e. absolute value of components of core
tensor α v/s rank of SP3D with TuckerMPI precision of 1.0 × 10−4. The
rank on horizontal axis is converted to canonical rank by sorting the singular
values in descending order.

We now consider functional approximations of singular
vectors along the first mode. Figure 2(a) shows first singular

vector W (1)
:,1 and its corresponding functional approximations

in P20 and P40. For better illustration, the corresponding
approximation errors are plotted in Figure 2(b). We find that a
sufficiently rich approximation space is necessary for accurate
representation of singular vectors as point wise error for
p = 40 is much smaller than with p = 20.
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Fig. 2. (a) Approximation of w(1)
1 (y1) using least squares with `1 regular-

ization from data points as components of W (1)
:,1 in the approximation space

of Legendre polynomials of degree p = 20 and p = 40. (b) Point wise
approximation error v/s grid index of the two approximations in (a)

Figure 3(a) and (b) show similar plots for the last singular
vector in the first mode i.e. W (1)

:,57 in approximation spaces P40

and W3,5. We clearly see that, in this case, a multi-resolution
wavelet basis is essential to get an accurate functional rep-
resentation, although point wise approximation error is high
as compared to the first singular vector. This is because the
singular vectors corresponding to higher ranks capture high
frequency signals in the dataset and hence require functional
basis with higher resolution.

We now illustrate results related to re-estimation of core
tensor using randomized least squares. In Figure 4, we show
the distribution of the leverage score of the measurement
matrix W (see section V) before and after mixing operation
(Step 3. of algorithm 2). We find that leverage scores, although
skewed, have non negligible mass in the range of [0.2,0.5].
On the other hand, after application of mixing operation,
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Fig. 3. Approximation of w(1)
57 (y1) using least squares with `1 regularization

from data points as components of W (1)
:,57 in the approximation space of

Legendre polynomials of degree p = 20 and wavelets with resolution level
5 and degree 3. (b) Point wise approximation error v/s grid index of the two
approximations in (a)

leverage scores are concentrated around a small value (0.12).
One can thus sample the desired number of rows uniformly to
reduce the size of problem (6). In Figure 5, we illustrate self
convergence of the re-estimated core tensor by measuring the
relative norm of change in α (by solving step 5. of algorithm
2) for S = S1 and S = S2, where S2 > S1. We find two
distinct regions in the plot separated by a sharp drop in self
convergence error at S ≈ 2.5R. Here R = 25×24×8, i.e. size
of the core tensor whose coefficients are being re-estimated.
Note that an oversampling factor of 2.5 is orders of magnitude
smaller as compared to size of the problem when estimating
the core tensor with all points in the dataset.

Table II shows compression error, compression ratio and
storage cost for functional sparse Tucker tensor for both test
cases. Finally, Figure 6 shows visualization of 2D slice of
the original dataset obtained from reconstruction of data from
sparse functional Tucker tensor. Reconstruction of the data
from functional tensor is computationally inexpensive as the
only computation required is evaluation of the basis functions
at points of interest.
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Fig. 4. Histogram plot of leverage scores of the measurement matrix W in
(a) before mixing and (b) after mixing (Step 3. of Algorithm 2)

Number of rows sampled ×10
4

0.5 1 1.5

‖α
S
1
−
α
S
2
‖ 2

‖α
S
2
‖ 2

10
-15

10
-10

10
-5

10
0

10
5

Fig. 5. Self convergence plot of α. Horizontal axis shows the number of rows
S sampled in Step 4. of algorithm 2. Vertical axis shows the change in α
(relative norm) estimated by sampling S1 and S2 rows (S2 = S1+103, S1 ∈
{3000, 4000, . . . , 17000}).

VII. CONCLUSION

We presented a novel technique to compress large volume
of data using functional sparse Tucker decomposition. The key
idea is to find a sufficiently accurate representation of data in
the set of functional Tucker tensors with complexity smaller



TABLE II
COMPRESSION RESULTS USING FUNCTIONAL SPARSE TUCKER TENSOR

Dataset Original
Storage cost Precision Compression

ratio
Reduced

Storage cost

SP3D 0.6GB 1.01× 10−2 3879 155 KB
1.9× 10−4 936 640KB

SP4D 300GB 1.1× 10−2 4.45× 105 673 KB

(a)

(b)

Fig. 6. Visualization of a 2D slice of SP4D dataset. (a) Original data and (b)
Reconstruction of tensor obtained from Randomized functional sparse Tucker
tensor.

by orders of magnitude as compared to the size of dataset. In
order to achieve this objective, we defined the set of sparse
functional Tucker tensors and used existing parallel implemen-
tation of Tucker decomposition to construct approximation in
this set. The singular vectors are approximated as functions
represented on suitable basis using least squares with sparse
regularization. The entire compression scheme was tested on
datasets obtained from high fidelity combustion modeling
simulations. For small loss of accuracy, the proposed strategy
results in compression ratio of up to 936 and 4.45 × 105 for
a third order and fourth order dataset respectively.
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