This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressediin
the paper do not necessarily represent the views of the U.S. Department of Energy or the|United States Government.

Supercomputer in a laptop:
Distributed application and runtime

development via architecture
simulation

Samuel Knight, Joseph Kenny and Jeremiah Wilke

Sandia National Laboratories, Livermore, CA

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions/of Sandia, LLC, a wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration/under contract' DE-NA0003525.

SAND2022-5716C

@ENERGY NVISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 1 Qutline

* Introduction
* MPI simulator design
« SST Macro Simulator design

» Architectural simulation as a communication library development
tool

« Example

31 Outline

* Introduction
* MPI simulator design
« SST Macro Simulator design

» Architectural simulation as a communication library development
tool

« Example

4

Introduction

Developing a network runtime is hard

* Hardware is non-deterministic
» Performance or correctness bugs might only occur with
certain message ordering

» Testing performance on system designs infeasible
« Can’t purchase a “system scale” testbed
» Possible configurations are limited

« Distributed systems are difficult to debug
» Performance or correctness bugs might only emerge at
certain scales
* Debugging distributed memory can be difficult - can’t just
GDB/Valgrind on your laptop

5 1 Qutline

* Introduction
* MPI simulator design
« SST Macro Simulator design

» Architectural simulation as a communication library development
tool

« Example

¢ | Common MPI simulator Implementations

MPI Application or Trace

Protocols, collectives
Matching, ordering
Message-transfer

Packetization and

Simulator Hardware Models
byte-transfer

() _ Layerintercepted
by simulator

* MPI Simulations intercept MPI calls using one of two common methods
* Read post-mortem traces from a previous MPI execution

» Capture MPI calls from an active MPI application (or
representation of an application)

* Intercepted MPI calls handled by simulator MPI implementation, rather
than system MPI (e.g. OpenMPI)

Common MPI simulator implementation challenges

MPI operations can be complex

Barrier
Async Messaging

Struct Alignment V Collective

Type tracking Communicator

Reduction Op

MPI Simulators must have an accurate network model and MPI runtime

The simulator’s MPI implementation is yet another component to:

» Validate: Correctly implemented APl and semantics can have
different implementations.

* Maintain: MPI standard change, new features and algorithms

New MPI standards create a moving development target

s I Qutline

* Introduction
* MPI simulator design
* SST Macro Simulator design

» Architectural simulation as a communication library development
tool

« Example

91 SST Macro implementation challenges

Several design challenges influenced SST Macro’s implementation

Encapsulation - The emulation of thousands of concurrent virtual
processes in a single simulator process

Interception - The transfer of control between the user’s software
stack and the simulator’s network model

Skeletonization - Strategies for reducing a full application to a
communication skeleton that estimates delays of compute intensive
and does not allocate large blocks of memory

10 1 Memory space separation (Encapsulation)

« Simulator runtime must mimic memory separation of a distributed
system

» Each virtual process needs a private:
» Stack - User space-threads for scalable stack separation
* Heap - Each individual heap allocation already “private”

» Globals - Skeletonizer renames global variables to be accessible in
a thread-local context

* Resulting simulation emulates concurrent execution of many virtual
processes in one physical simulator processes (or a few simulator
processes for parallel discrete event simulation - PDES)

SST/Macro Process
MPI Rank 0 MPI Rank 1 Stacks

Context Context
Global Data Global Data 0 1

Global
Data

Address Space Address Space Address Space

11 1 Low-level Interception

MPI Application
OpenMPI

N\
(= DAY
Portals A /\

Hardware Models
(Simulator)

Protocols, collectives

Matching, ordering

Message-transfer

Packetization and
byte-transfer

C) _ Low-level layer
~ intercepted by simulator

* A lot of code complexity above the hardware model

* Requiring simulator to implement stand-alone MPI adds significant
complexity to the simulator

» Easier to maintain a simulator-specific APl implementation for uGNI or
verbs

12 1 Skeletonization

« Execution of encapsulated HPC jobs won’t fit on a laptop; compute
and memory resources are too scarce

* Many compute and data intensive operations are not really needed to
generate a network model

« SST Macro’s compiler wrapper supports Clang-based source-to-source
transformation

» Uses preprocessor hints from app developer to
 Remove large memory allocations
« Substitute compute regions with simulated delay
« Simulate movement large memory allocations across network

* Communication libraries above the low-level intercept must safely
handle null buffers

13

Skeletonization: lllustration with MP| — extended in this
study to uGNI/verbs/GASNet

Original Source Code:
double* big = new double[N];
MPI_Sendrecv(big,...);
for (i=0; i < N; ++i)

expensive_compute();
}

LMPI_Allreduce(...);

1) Developer
adds pragmas

J

2) Clang
source-to-source

Auto-skeletonized
Source Code:
double* big = nullptr;

MPI_Sendrecv(big,...); /modeled

modelCompute(N,...);

LMPI_Allreduce(...), //modeled

O src.cpp? call SIM_MPI_Sendrecv(....);

Redirect MPI calls

[Modified Source Code: |

#pragma sim null_variable

double* big = new double[N];

MPI_Sendrecv(big,...);

#pragma sim compute

for (i=0; i < N; ++i)
expensive_compute();

}

ul PI=AIIred ucel(...); y

Auto-skeletonized
Object Code:

call modelCompute(N);
call SIM_MPI_Allreduce(...); |

4) Link to simulator with

Simulation
Endpoint
Model

» Can be extended to intercept ibv, uGNI

SIM_MPI_X symbols
sim++ -0 sim.x -Isim

Collaborative model for system design with the Structural
14 1 Simulation Toolkit (SST)

Workload models:

Endpoint
Interface

SST Core

Component

Link)Component

Event

Core

Instantiation

Time

Configuration

Coordination

Parallel

Partitioning

Communication

/

Device/Network
Interface

15 1 Qutline

* Introduction
* MPI simulator design
« SST Macro Simulator design

* Architectural simulation as a communication library development
tool

« Example

16

Debugging support

SST Macro’s simulation runtime can scale down to a single process

Network endpoints are user-space threads, which run in shared
memory. One instance of Valgrind could globally test a runtime for
memory leaks

SST Macro’s compiler is a C/C++ wrapper, and will emit GDB and LLDB
compatible symbols

Configurable runtime, change the configuration file and go.
» Seeded pseudo-random packet and orderings and delays
« Configurable topology/node counts/hardware specs
» Source code pragma annotations

17 1 Revisiting the Introduction

Developing a network runtime is hard

* Hardware is non-deterministic
» Performance or correctness bugs might only occur with
certain message ordering

» Testing performance on system designs infeasible
« Can’t purchase a “system scale” testbed
» Possible configurations are limited

» Distributed systems are difficult to debug
» Performance or correctness bugs might only emerge at
certain scales
* Debugging distributed memory can be difficult - can’t just
GDB/Valgrind on your laptop

18 I Revisiting the Introduction

Developing a network runtime is hard

Hamwaw E | bt on "
certain-message-ordering Simulated hardware is I

deterministic, packet ordering

can change on demand
» Testing performance on system designs infeasible

« Can’t purchase a “system scale” testbed
» Possible configurations are limited |

» Distributed systems are difficult to debug
» Performance or correctness bugs might only emerge at
certain scales
* Debugging distributed memory can be difficult - can’t just :
GDB/Valgrind on your laptop ‘

191 Revisiting the Introduction

Developing a network runtime is hard

Ha*dwaw E | bt on "
certain-message-ordering Simulated hardware is I

deterministic, packet ordering
can change on demand

Tests : esions infeasibl

’ € ”

—— Possible configurations-are-timited Network components are |

transparent; routing and
topology are settings
» Distributed systems are difficult to debug
» Performance or correctness bugs might only emerge at
certain scales
* Debugging distributed memory can be difficult - can’t just :
GDB/Valgrind on your laptop ‘

20 I Revisiting the Introduction

Developing a network runtime is hard

PEEE -ROR-Geterministic | " | "
certain-message-ordering Simulated hardware is

deterministic, packet ordering
can change on demand

Tests : esions infeasibl

’ € ”

——= Possible configurations are limited Network components are

transparent; routing and
topology are settings

Distril I ifficul el
—-—PepﬁeFm&qee—elLeeFFeemess—bugs—migl%enLy—emerge—a%

gg 3) Argltrarlfy defilned system that

can run in a processes with user
-space threads, tools like GDB
and Valgrind globally inspect
the runtime.

21 I Qutline

* Introduction
* MPI simulator design
« SST Macro Simulator design

» Architectural simulation as a communication library development
tool

 Example

2 I GASNet on SST Macro example

SUMI: Simulator Unified
Messaging Interface

SST/macro Packetizer

Merlin v PISCES
Network Model Network Model

Hardware Models
Simulator-only

C) — Low-level layer
intercepted by simulator

(—

* GASNet builds with uGNI or verbs conduit, and uses APIs provided
by SST Macro’s compiler wrapper

« At runtime, GASNet’s runtime calls to uGNI are intercepted by the |
simulator and pass into the simulated network.

23 1 GASNet benchmark with SST Macro

Testcore?2 benchmark

* Description: GASNet Core checksum test

* This stress tests the ability of the core to successfully send

* AM Requests/Replies with correct data delivery

* testing is run ‘iters’ times with Medium/Long payload sizes ranging from 1.. max_payload’,
* with up to 'depth’ AMs in-flight from a given node at any moment

Changes for Auto-Skeletonization

Allocations replaced with null pointers Remove a compute intensive

S grep -rn "pragma sst null_variable" tests/testcore2.c #pragma sst compute

#pragma sst null_variable replace nullptr for (elemidx = 0; elemidx < sz; elemidx++) {
uint8_t *peerregseg; /* long request landing zone */

#pragma sst null_variable replace nullptr 1

uint8_t *peerrepseg; /* long reply landing zone */
#pragma sst null_variable replace nullptr
uint8_t *localseg;

#pragma sst null_variable replace nullptr 1 4 “#pragmas SSt” Su bStitUtionS

Parameter tag inserted into GASNet

#pragma sst overhead gni_mem_register
status = GNI_MemRegister(nic_handle, addr, nbytes, NULL,
flags, -1, &pd->local_mem_hndl);

24 I GASNet simulation scaling SST Macro example

600 10
=0 \Wall Time
*—e@ Memory Footprint

500}
18 —
(an}
e
~ 400} —
=2 lg E
GEJ o
= 300 2
= L.
© 14 >
= S
200} g
=

12

100t

512 1024 2048 4096
Num. Procs

« Simulations with up to 4K skeletonized GASNet ranks from
testcore? test fit on a single machine
* “non-skeletonized” version minimally needs 128GB
« 32 1MB messages in flight per process
* Probably more due to extra buffers in the GASNet runtime

25

GASNet benchmark with SST Macro

Benchmarking performance crossover between GASNet’s medium and
log protocols. Memory registration overhead was varied by an input
file parameter.

= Medium/Long Crossover
Long Protocol
== Medium Protocaol

[\
[ie]

roughput (GB/s)
Medium/Long Crossover (KB}
[] MJ by [8] [y %] [N =]
Mo B W o W @

58]
=
T

~J
o]

o S 3p 4 10 15 2.0 2.5
6,25 0 10 Z%essage size (KB) Memory Registration (us)

(Left) Visualization of GASNet’s Medium and Long protocol
throughput and latency, varied by message size and registration

overhead.
(Right) Visualization of the performance crossover (intersection of

the two surfaces on the left) where Long Protocol has more
throughput than Medium

26

Conclusion

Simulators often implement MPI libraries

* May be difficult to maintain

» Contribute to model inaccuracy
Low level interception reduces simulator runtime complexity, increases
application variety
Encapsulation via user-space threading and global variable
skeletonization puts a distributed runtime into a single simulator
process
Common development tools, e.g. Valgrind and GDB, can operate on the
entire simulated memory space at once
Deterministic and transparent simulated hardware
Rich options for unit testing and parameter sweeps

* Seeded pseudo-random message ordering, deterministic replay

* Network topology, routing, and bandwidth

* In-code annotations for simulated delays (e.g. test effectiveness of

hardware support or future optimizations)

Acknowledgments

]

