
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Supercomputer in a laptop:
Distributed application and runtime

development via architecture
simulation

Samuel Knight , Joseph Kenny and Jeremiah Wi lke

Sandia Nat ional Laborator ies, L ivermore, CA

1

SAND2022-5716CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline2

• Introduction

• MPI simulator design

• SST Macro Simulator design

• Architectural simulation as a communication library development
tool

• Example

Outline3

• Introduction

• MPI simulator design

• SST Macro Simulator design

• Architectural simulation as a communication library development
tool

• Example

Introduction4

Developing a network runtime is hard

• Hardware is non-deterministic
• Performance or correctness bugs might only occur with

certain message ordering

• Testing performance on system designs infeasible
• Can’t purchase a “system scale” testbed
• Possible configurations are limited

• Distributed systems are difficult to debug
• Performance or correctness bugs might only emerge at

certain scales
• Debugging distributed memory can be difficult - can’t just

GDB/Valgrind on your laptop

Outline5

• Introduction

• MPI simulator design

• SST Macro Simulator design

• Architectural simulation as a communication library development
tool

• Example

Common MPI simulator Implementations6

• MPI Simulations intercept MPI calls using one of two common methods
• Read post-mortem traces from a previous MPI execution
• Capture MPI calls from an active MPI application (or

representation of an application)
• Intercepted MPI calls handled by simulator MPI implementation, rather

than system MPI (e.g. OpenMPI)

Common MPI simulator implementation challenges7

• MPI operations can be complex

• MPI Simulators must have an accurate network model and MPI runtime

• The simulator’s MPI implementation is yet another component to:
• Validate: Correctly implemented API and semantics can have

different implementations.
• Maintain: MPI standard change, new features and algorithms

• New MPI standards create a moving development target

Struct Alignment

Barrier

Type tracking

V Collective

Communicator

Async Messaging

Reduction Op

Outline8

• Introduction

• MPI simulator design

• SST Macro Simulator design

• Architectural simulation as a communication library development
tool

• Example

SST Macro implementation challenges9

• Encapsulation – The emulation of thousands of concurrent virtual
processes in a single simulator process

• Interception - The transfer of control between the user’s software
stack and the simulator’s network model

• Skeletonization - Strategies for reducing a full application to a
communication skeleton that estimates delays of compute intensive
and does not allocate large blocks of memory

Several design challenges influenced SST Macro’s implementation

Memory space separation (Encapsulation)10

• Simulator runtime must mimic memory separation of a distributed
system

• Each virtual process needs a private:
• Stack – User space-threads for scalable stack separation
• Heap – Each individual heap allocation already “private”
• Globals – Skeletonizer renames global variables to be accessible in

a thread-local context

• Resulting simulation emulates concurrent execution of many virtual
processes in one physical simulator processes (or a few simulator
processes for parallel discrete event simulation – PDES)

Low-level Interception11

• A lot of code complexity above the hardware model
• Requiring simulator to implement stand-alone MPI adds significant

complexity to the simulator
• Easier to maintain a simulator-specific API implementation for uGNI or

verbs

Skeletonization12

• Execution of encapsulated HPC jobs won’t fit on a laptop; compute
and memory resources are too scarce

• Many compute and data intensive operations are not really needed to
generate a network model

• SST Macro’s compiler wrapper supports Clang-based source-to-source
transformation

• Uses preprocessor hints from app developer to
• Remove large memory allocations
• Substitute compute regions with simulated delay
• Simulate movement large memory allocations across network

* Communication libraries above the low-level intercept must safely
handle null buffers

Skeletonization: Illustration with MPI – extended in this
study to uGNI/verbs/GASNet13

• Can be extended to intercept ibv, uGNI

Collaborative model for system design with the Structural
Simulation Toolkit (SST)14

Endpoint
Interface

Device/Network
Interface

SST Core

Device/Network Models:

Workload models:

Outline15

• Introduction

• MPI simulator design

• SST Macro Simulator design

• Architectural simulation as a communication library development
tool

• Example

Debugging support16

• SST Macro’s simulation runtime can scale down to a single process

• Network endpoints are user-space threads, which run in shared
memory. One instance of Valgrind could globally test a runtime for
memory leaks

• SST Macro’s compiler is a C/C++ wrapper, and will emit GDB and LLDB
compatible symbols

• Configurable runtime, change the configuration file and go.
• Seeded pseudo-random packet and orderings and delays
• Configurable topology/node counts/hardware specs
• Source code pragma annotations

Revisiting the Introduction17

Developing a network runtime is hard

• Hardware is non-deterministic
• Performance or correctness bugs might only occur with

certain message ordering

• Testing performance on system designs infeasible
• Can’t purchase a “system scale” testbed
• Possible configurations are limited

• Distributed systems are difficult to debug
• Performance or correctness bugs might only emerge at

certain scales
• Debugging distributed memory can be difficult - can’t just

GDB/Valgrind on your laptop

Revisiting the Introduction18

Developing a network runtime is hard

• Hardware is non-deterministic
• Performance or correctness bugs might only occur with

certain message ordering

• Testing performance on system designs infeasible
• Can’t purchase a “system scale” testbed
• Possible configurations are limited

• Distributed systems are difficult to debug
• Performance or correctness bugs might only emerge at

certain scales
• Debugging distributed memory can be difficult - can’t just

GDB/Valgrind on your laptop

Simulated hardware is
deterministic, packet ordering
can change on demand

Revisiting the Introduction19

Developing a network runtime is hard

• Hardware is non-deterministic
• Performance or correctness bugs might only occur with

certain message ordering

• Testing performance on system designs infeasible
• Can’t purchase a “system scale” testbed
• Possible configurations are limited

• Distributed systems are difficult to debug
• Performance or correctness bugs might only emerge at

certain scales
• Debugging distributed memory can be difficult - can’t just

GDB/Valgrind on your laptop

Simulated hardware is
deterministic, packet ordering
can change on demand

Network components are
transparent; routing and
topology are settings

Revisiting the Introduction20

Developing a network runtime is hard

• Hardware is non-deterministic
• Performance or correctness bugs might only occur with

certain message ordering

• Testing performance on system designs infeasible
• Can’t purchase a “system scale” testbed
• Possible configurations are limited

• Distributed systems are difficult to debug
• Performance or correctness bugs might only emerge at

certain scales
• Debugging distributed memory can be difficult - can’t just

GDB/Valgrind on your laptop

Simulated hardware is
deterministic, packet ordering
can change on demand

Network components are
transparent; routing and
topology are settings

Arbitrarily defined system that
can run in a processes with user
-space threads, tools like GDB
and Valgrind globally inspect
the runtime.

Outline21

• Introduction

• MPI simulator design

• SST Macro Simulator design

• Architectural simulation as a communication library development
tool

• Example

GASNet on SST Macro example22

• GASNet builds with uGNI or verbs conduit, and uses APIs provided
by SST Macro’s compiler wrapper

• At runtime, GASNet’s runtime calls to uGNI are intercepted by the
simulator and pass into the simulated network.

GASNet benchmark with SST Macro23

$ grep -rn "pragma sst null_variable" tests/testcore2.c
#pragma sst null_variable replace nullptr
uint8_t *peerreqseg; /* long request landing zone */
#pragma sst null_variable replace nullptr
uint8_t *peerrepseg; /* long reply landing zone */
#pragma sst null_variable replace nullptr
uint8_t *localseg;
#pragma sst null_variable replace nullptr
…

Changes for Auto-Skeletonization

* Description: GASNet Core checksum test
* This stress tests the ability of the core to successfully send
* AM Requests/Replies with correct data delivery
* testing is run 'iters' times with Medium/Long payload sizes ranging from 1..'max_payload’,
* with up to 'depth' AMs in-flight from a given node at any moment

Testcore2 benchmark

Parameter tag inserted into GASNet
#pragma sst overhead gni_mem_register
 status = GNI_MemRegister(nic_handle, addr, nbytes, NULL,
 flags, -1, &pd->local_mem_hndl);

Allocations replaced with null pointers Remove a compute intensive
region#pragma sst compute
for (elemidx = 0; elemidx < sz; elemidx++) {
 …
}

14 “#pragmas sst” substitutions

GASNet simulation scaling SST Macro example24

• Simulations with up to 4K skeletonized GASNet ranks from
testcore2 test fit on a single machine

• “non-skeletonized” version minimally needs 128GB
• 32 1MB messages in flight per process
• Probably more due to extra buffers in the GASNet runtime

GASNet benchmark with SST Macro25

Benchmarking performance crossover between GASNet’s medium and
log protocols. Memory registration overhead was varied by an input
file parameter.

(Left) Visualization of GASNet’s Medium and Long protocol
throughput and latency, varied by message size and registration
overhead.
(Right) Visualization of the performance crossover (intersection of
the two surfaces on the left) where Long Protocol has more
throughput than Medium

Conclusion26

• Simulators often implement MPI libraries
• May be difficult to maintain
• Contribute to model inaccuracy

• Low level interception reduces simulator runtime complexity, increases
application variety

• Encapsulation via user-space threading and global variable
skeletonization puts a distributed runtime into a single simulator
process

• Common development tools, e.g. Valgrind and GDB, can operate on the
entire simulated memory space at once

• Deterministic and transparent simulated hardware
• Rich options for unit testing and parameter sweeps

• Seeded pseudo-random message ordering, deterministic replay
• Network topology, routing, and bandwidth
• In-code annotations for simulated delays (e.g. test effectiveness of

hardware support or future optimizations)

Acknowledgments
Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

