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Developing a network runtime is hard

• Hardware is non-deterministic
• Performance or correctness bugs might only occur with 

certain message ordering

• Testing performance on system designs infeasible
• Can’t purchase a “system scale” testbed
• Possible configurations are limited

• Distributed systems are difficult to debug
• Performance or correctness bugs might only emerge at 

certain scales
• Debugging distributed memory can be difficult - can’t just 

GDB/Valgrind on your laptop
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Common MPI simulator Implementations6

• MPI Simulations intercept MPI calls using one of two common methods
• Read post-mortem traces from a previous MPI execution
• Capture MPI calls from an active MPI application (or 

representation of an application)
• Intercepted MPI calls handled by simulator MPI implementation, rather 

than system MPI (e.g. OpenMPI)



Common MPI simulator implementation challenges7

• MPI operations can be complex

• MPI Simulators must have an accurate network model and MPI runtime

• The simulator’s MPI implementation is yet another component to:
• Validate: Correctly implemented API and semantics can have 

different implementations.
• Maintain: MPI standard change, new features and algorithms

• New MPI standards create a moving development target
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V Collective
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SST Macro implementation challenges9

• Encapsulation – The emulation of thousands of concurrent virtual 
processes in a single simulator process

• Interception - The transfer of control between the user’s software 
stack and the simulator’s network model

• Skeletonization - Strategies for reducing a full application to a 
communication skeleton that estimates delays of compute intensive 
and does not allocate large blocks of memory

Several design challenges influenced SST Macro’s implementation



Memory space separation (Encapsulation)10

• Simulator runtime must mimic memory separation of a distributed 
system

• Each virtual process needs a private:
• Stack – User space-threads for scalable stack separation
• Heap – Each individual heap allocation already “private”
• Globals – Skeletonizer renames global variables to be accessible in 

a thread-local context

• Resulting simulation emulates concurrent execution of many virtual 
processes in one physical simulator processes (or a few simulator 
processes for parallel discrete event simulation – PDES)



Low-level Interception11

• A lot of code complexity above the hardware model
• Requiring simulator to implement stand-alone MPI adds significant 

complexity to the simulator
• Easier to maintain a simulator-specific API implementation for uGNI or 

verbs



Skeletonization12

• Execution of encapsulated HPC jobs won’t fit on a laptop; compute 
and memory resources are too scarce

• Many compute and data intensive operations are not really needed to 
generate a network model

• SST Macro’s compiler wrapper supports Clang-based source-to-source 
transformation

• Uses preprocessor hints from app developer to
• Remove large memory allocations
• Substitute compute regions with simulated delay
• Simulate movement large memory allocations across network

* Communication libraries above the low-level intercept must safely 
handle null buffers



Skeletonization: Illustration with MPI – extended in this 
study to uGNI/verbs/GASNet13

• Can be extended to intercept ibv, uGNI



Collaborative model for system design with the Structural 
Simulation Toolkit (SST)14

Endpoint
Interface

Device/Network
Interface

SST Core

Device/Network Models:

Workload models:
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Debugging support16

• SST Macro’s simulation runtime can scale down to a single process

• Network endpoints are user-space threads, which run in shared 
memory. One instance of Valgrind could globally test a runtime for 
memory leaks

• SST Macro’s compiler is a C/C++ wrapper, and will emit GDB and LLDB 
compatible symbols

• Configurable runtime, change the configuration file and go. 
• Seeded pseudo-random packet and orderings and delays
• Configurable topology/node counts/hardware specs
• Source code pragma annotations
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Simulated hardware is 
deterministic, packet ordering 
can change on demand

Network components are 
transparent; routing and 
topology are settings

Arbitrarily defined system that 
can run in a processes with user
-space threads, tools like GDB 
and Valgrind globally inspect 
the runtime.
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GASNet on SST Macro example22

• GASNet builds with uGNI or verbs conduit, and uses APIs provided 
by SST Macro’s compiler wrapper

• At runtime, GASNet’s runtime calls to uGNI are intercepted by the 
simulator and pass into the simulated network.



GASNet benchmark with SST Macro23

$ grep -rn "pragma sst null_variable" tests/testcore2.c
#pragma sst null_variable replace nullptr
uint8_t *peerreqseg; /* long request landing zone */
#pragma sst null_variable replace nullptr
uint8_t *peerrepseg; /* long reply landing zone */
#pragma sst null_variable replace nullptr
uint8_t *localseg;
#pragma sst null_variable replace nullptr
…

Changes for Auto-Skeletonization

* Description: GASNet Core checksum test
* This stress tests the ability of the core to successfully send
* AM Requests/Replies with correct data delivery
* testing is run 'iters' times with Medium/Long payload sizes ranging from 1..'max_payload’,
* with up to 'depth' AMs in-flight from a given node at any moment

Testcore2 benchmark

Parameter tag inserted into GASNet
#pragma sst overhead gni_mem_register
  status = GNI_MemRegister(nic_handle, addr, nbytes, NULL,
                           flags, -1, &pd->local_mem_hndl);

Allocations replaced with null pointers Remove a compute intensive 
region#pragma sst compute
for (elemidx = 0; elemidx < sz; elemidx++) {
 …
}

14 “#pragmas sst” substitutions



GASNet simulation scaling SST Macro example24

• Simulations with up to 4K skeletonized GASNet ranks from 
testcore2 test fit on a single machine

• “non-skeletonized” version minimally needs 128GB
• 32 1MB messages in flight per process
• Probably more due to extra buffers in the GASNet runtime



GASNet benchmark with SST Macro25

Benchmarking performance crossover between GASNet’s medium and 
log protocols. Memory registration overhead was varied by an input 
file parameter.

(Left) Visualization of GASNet’s Medium and Long protocol 
throughput and latency, varied by message size and registration 
overhead.
(Right) Visualization of the performance crossover (intersection of 
the two surfaces on the left) where Long Protocol has more 
throughput than Medium



Conclusion26

• Simulators often implement MPI libraries
• May be difficult to maintain
• Contribute to model inaccuracy

• Low level interception reduces simulator runtime complexity, increases 
application variety

• Encapsulation via user-space threading and global variable 
skeletonization puts a distributed runtime into a single simulator 
process

• Common development tools, e.g. Valgrind and GDB, can operate on the 
entire simulated memory space at once

• Deterministic and transparent simulated hardware
• Rich options for unit testing and parameter sweeps

• Seeded pseudo-random message ordering, deterministic replay
• Network topology, routing, and bandwidth
• In-code annotations for simulated delays (e.g. test effectiveness of 

hardware support or future optimizations)
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