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Problem

* Objective: Mitigation planning optimization for wide-area n-k
emergencies where multiple contingencies occur across a wide area in
guick succession

* Even with mitigations in place, major dynamics and protective tripping are
likely to ensue, with major implications to system stability and operability

— Particularly want to avoid cascading, large blackouts, black start with unknown failures

* Optimization objectives are to minimize cascading, widespread blackout &
permanent damage to long-lead devices, and to improve restorability.

* Decisions may include hardening, configuration, preventive & emergency
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Key Research Challenge

Prior resilience optimization work does not address wide-area n-k events
— Typically assumes either minor or localized hazards

— Relies on non-dynamic impact models, which cannot detect loss of stability

— Relies upon tight bound constraints which are likely not feasible in these
emergencies (e.g., protective tripping may be unavoidable)

Incapable of addressing hybrid/cascading behavior due to assuming away protective devices

We intend to incorporate both dynamic system physics and discrete
protection in our optimization model

— for accuracy of impact modeling and

— to allow relaxing constraints that severely limit feasible space
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Approach

*  Stochastic planning optimization

o A P s

— choose from proposed hardening and mitigation measures and locations c N »~ /\\/\
— optimize dynamically-assessed resilience IS
— across a set of scenarios representing hazard uncertainty = <« /\J\J \/\/\\f j/“\h/
*  Two optimization stages:
— mitigation decisions enacted across all hazard scenarios
— impacts (and emergency control) assessed for each hazard scenario,
We are here

using dynamic system physics and discrete protection logic
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Our phased project plan:

1. build stochastic, continuous-dynamic optimization models Optimal  + optimal planning + hybrid dynamics
. . . . . . control
2. add realistic hazard scenarios and appropriate discrete planning options _ _ o _
stochastic + discrete 15*stage + switching vars in 2™
NLP vars (MINLP) stage (time-sensitive)

3. add variables and constraints to represent discrete dynamics
from protective devices, and address temporal discretization challenges
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Dynamic Optimization Literature

* Transient Stability Constrained

Min h(x, vy, u)
— Optimal Power Flow (TSCOPF)
— Emergency Control (TSEC) subject to
*  Minimize objective over contingencies, subject to DAE path constraints
— TSCOPF: optimize initial conditions x;, for potential contingencies d )
— TSEC: optimize control inputs u for realized contingency a x=flxyu)
— Decision variables: Generator and load real/reactive powers (or control setpoints) 0= g(x,y,u)
— Economic (generation cost) objectives
— Path constraints limiting: c(x,y,u) <0
* Rotor angles with respect to center-of-inertia average
(approximate treatment of transient stability) x(0) = X0
* Line currents }'(U) = Y,
* Voltages

— Good survey paper: S. Abhyankar, G. Geng, M. Anitescu, X. Wang, and V. Dinavahi (2017), Solution techniques for transient stability-
I/ff IEEE constrained optimal power flow—Part I. IET Generation, Transmission & Distribution, 11(12):3177-3185.
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Dynamic Power Systems Modeling

* In major emergencies, dynamics play important role in system stability
* Generator dynamics (Sauer, Pai, Chow)

.
— Angular acceleration = mechanical power in, minus electrical power out 2Hd™S _, o,
n  tm e

—  We use the 4™ order flux-decay model commonly used in stability studies Po dr~

— An additional term (turbine with no reheating) models torque response delay

»  Network power balance 0=Ve"’ ® (YVE-’I’B)* — Snet

* Load dynamics
— Play an important role in stability studies*

— Exponential recovery model (Karlsson & Hill) captures load responses to voltage fluctuations

= Combined, these pose a system of differential algebraic equations (DAE)

— *R. Zhang, Y. Xu, W. Zhang, Z. Y. Dong, and Y. Zheng (2016), Impact of dynamic models on transient stability-constrained optimal power flow,
fé; — 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 18-23
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System Stability Penalty Objectives

* Insevere emergencies, bound constraints * Example metrics which can be penalized for

may be temporarily exceeded deviating from nominal:
* Our goal is to position the system as far — Voltage f Voltage penalty
- . . o vs per-unit voltage
within bounds as quickly as possible — Frequency
*  Provide safety margin against further events — Transient stability =r
* In addition to path constraints, we penalize — Line currents A et
approaching or exceeding certain limits in T \ oo marain
the objective function « Decision variables LN
— Example: Transient stability — Mechanical torque
. — Exciter voltage reference
= Yo, Hidk
0, = |0 —==5—— — Load shed
Xy-1 Hk
(want <100 degrees) — (more to be added)
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Stochastic Model o

 Atwo-stage stochastic programming model is structured as follows: 4

minc(z) + E[d(yy)]
Z. Yy

s.1 Set of scenarios
representing

flz) <D / hazard uncertainty

r-’l."{{fi_'} (_: J‘.l“:'_."' '.vr{l.‘ E l:[_J
i’-‘{J'J + L(Efl,'} E: HL -.Urh._ E .l-p,

* Inthe following example,
— Variables x and y are pre- and post-contingency versions, respectively, of our control variables (P ;and V, )
— Objectives c(x) and d(y) are pre- and post-contingency sums of penalty metrics mentioned earlier
— Dynamics are included in constraints to assess control effects and scenario impacts
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Stochastic Preventive-corrective Control
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Multi-scenario Case Pre-positioning

* Consider on the 9-bus test system four possible scenarios — the no-failure case, a line trip, a
load trip, and a generator trip, each with probability of occurring of 0.25

* Below is first-stage pre-positioning of V.. and P, to minimize first stage penalty plus
average second stage penalty across all scenarios
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(MVA — very fast ramp rates assumed for demonstration purposes)
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Multi-scenario Case Recourse Action
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Impact of Preventive-corrective Control

* Generator trip example on 9-bus system

* Despite sudden loss of 24% of total
generation, voltages are kept centered
within acceptable bounds around 1.0 p.u.

* Coupling first and second-stage controls is
particularly effective:

— 65% reduction in objective value compared
to pre-positioning alone

— 61% reduction compared to recourse
control alone
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Project Status

* Built 2-stage stochastic model with * Researchinto

power system dynamics — mitigation options
— Novel coupled dynamic preventive- — model & variable reduction
corrective control* — multiple-shooting discretization
— Demonstrated on RTS-96 test system (see next slide)
T . * Beginning MINLP research

— Binary variables representing component-
wise failures and mitigations

— Toy HDS model to start addressing temporal
discretization challenges in year 3

/fr_ *B. Arguello, N. Stewart, M. Hoffman (2021), Stochastic Optimization of Power System Dynamics for Grid Resilience. 54th Hawaii Int’l Conf. on System Sciences.
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SCIENCE+ ENGINEERING + RESEARCH UNIVERSITY Estimation

* Multiple-shooting is a hybrid of the sequential and cemens
simultaneous discretization methods I
— coarse discretization in optimization formulation, Fet Fes Fem | | rateie
reconciled with higher-fidelity simulation between nodes T~
It has been used once on dynamic power system Aigrmen: Condion
problems*; we wish to further explore its benefits: \S
e e

— More natural inclusion of adaptive time discretization
for accurate switching times

— High-fidelity continuous-time control despite coarse
discretization of optimization model

— Computational efficiency and parallelizability

*Geng, V., Ajjarapu, V., and Jiang, Q. (2014), A hybrid dynamic optimization approach for stability constrained optimal power flow.

.{ EEE IEEE Transactions on Power Systems, 29(5):2138-2149.
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Conclusion

* Inyear 1, optimizing preventive-corrective ¢ Relevance:

control vs. uncertain hazards —

— Allows better solutions across a wider set of
contingencies than otherwise possible

— Serves as a foundation for dynamics-
informed resilience planning optimization
against severe threats in following years

* Remaining key challenges:

— Improving realism and scale

— Stochastic (MINLP) mitigation planning

*  With realistic mitigations & resilience
objectives (load shed, device damage, etc.)

* With protective tripping in dynamics (year 3)
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Hybrid dynamic physics within an
optimization model addresses key gaps
* Especially resilience planning for
n-k emergencies
Formulation and solution methods are
relevant to other infrastructures and hybrid
dynamical systems

Insights regarding scalability, solution
methods and discretization relevant to
optimization community
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