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Problem
• Objective: Mitigation planning optimization for wide-area n­k 

emergencies where multiple contingencies occur across a wide area in 
quick succession

• Even with mitigations in place, major dynamics and protective tripping are 
likely to ensue, with major implications to system stability and operability

– Particularly want to avoid cascading, large blackouts, black start with unknown failures

• Optimization objectives are to minimize cascading, widespread blackout & 
permanent damage to long-lead devices, and to improve restorability.

• Decisions may include hardening, configuration, preventive & emergency 
control, strategic spare purchases and placement, SSTs, etc.
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Key Research Challenge
• Prior resilience optimization work does not address wide-area n­k events

– Typically assumes either minor or localized hazards
– Relies on non-dynamic impact models, which cannot detect loss of stability
– Relies upon tight bound constraints which are likely not feasible in these 

emergencies (e.g., protective tripping may be unavoidable)
• Incapable of addressing hybrid/cascading behavior due to assuming away protective devices

• We intend to incorporate both dynamic system physics and discrete 
protection in our optimization model
– for accuracy of impact modeling and 
– to allow relaxing constraints that severely limit feasible space
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Approach
• Stochastic planning optimization

– choose from proposed hardening and mitigation measures and locations

– optimize dynamically-assessed resilience 

– across a set of scenarios representing hazard uncertainty

• Two optimization stages:
– mitigation decisions enacted across all hazard scenarios

– impacts (and emergency control) assessed for each hazard scenario, 
using dynamic system physics and discrete protection logic

• Our phased project plan:
1. build stochastic, continuous-dynamic optimization models

2. add realistic hazard scenarios and appropriate discrete planning options

3. add variables and constraints to represent discrete dynamics 
from protective devices, and address temporal discretization challenges
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Dynamic Optimization Literature
•  Transient Stability Constrained

– Optimal Power Flow (TSCOPF)
– Emergency Control (TSEC)

•  Minimize objective over contingencies, subject to DAE path constraints
– TSCOPF: optimize initial conditions x­0 for potential contingencies
– TSEC: optimize control inputs u for realized contingency
– Decision variables: Generator and load real/reactive powers (or control setpoints)
– Economic (generation cost) objectives
– Path constraints limiting:

• Rotor angles with respect to center-of-inertia average
(approximate treatment of transient stability)

• Line currents
• Voltages
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Good survey paper: S. Abhyankar, G. Geng, M. Anitescu, X. Wang, and V. Dinavahi (2017), Solution techniques for transient stability­
constrained optimal power flow–Part I. IET Generation, Transmission & Distribution, 11(12):3177–3185.



Dynamic Power Systems Modeling
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*R. Zhang, Y. Xu, W. Zhang, Z. Y. Dong, and Y. Zheng (2016), Impact of dynamic models on transient stability­constrained optimal power flow, 
2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 18–23



System Stability Penalty Objectives
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Stochastic Model 
• A two-stage stochastic programming model is structured as follows:

• In the following example,
– Variables x and y are pre- and post-contingency versions, respectively, of our control variables (Pref and Vref)
– Objectives c(x) and d(y) are pre- and post-contingency sums of penalty metrics mentioned earlier
– Dynamics are included in constraints to assess control effects and scenario impacts
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Stochastic Preventive-corrective Control
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Multi-scenario Case Pre-positioning
• Consider on the 9-bus test system four possible scenarios – the no-failure case, a line trip, a 

load trip, and a generator trip, each with probability of occurring of 0.25
• Below is first-stage pre-positioning of Vref  and Pref to minimize first stage penalty plus 

average second stage penalty across all scenarios

10

Vref Pref

(MVA – very fast ramp rates assumed for demonstration purposes)



Multi-scenario Case Recourse Action
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Impact of Preventive-corrective Control
• Generator trip example on 9-bus system
• Despite sudden loss of 24% of total 

generation, voltages are kept centered 
within acceptable bounds around 1.0 p.u.

• Coupling first and second-stage controls is 
particularly effective:
– 65% reduction in objective value compared 

to pre-positioning alone
– 61% reduction compared to recourse 

control alone
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Project Status
• Built 2-stage stochastic model with 

power system dynamics
– Novel coupled dynamic preventive-

corrective control*
– Demonstrated on RTS-96 test system

• Research into 
– mitigation options
– model & variable reduction
– multiple-shooting discretization 

(see next slide)
• Beginning MINLP research

– Binary variables representing component-
wise failures and mitigations

– Toy HDS model to start addressing temporal 
discretization challenges in year 3
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*B. Arguello, N. Stewart, M. Hoffman (2021), Stochastic Optimization of Power System Dynamics for Grid Resilience. 54th Hawaii Int’l Conf. on System Sciences.



NMT Research
• Multiple-shooting is a hybrid of the sequential and 

simultaneous discretization methods 
– coarse discretization in optimization formulation, 

reconciled with higher-fidelity simulation between nodes

• It has been used once on dynamic power system 
problems*; we wish to further explore its benefits:
– More natural inclusion of adaptive time discretization 

for accurate switching times
– High-fidelity continuous-time control despite coarse 

discretization of optimization model
– Computational efficiency and parallelizability
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*Geng, V., Ajjarapu, V., and Jiang, Q. (2014), A hybrid dynamic optimization approach for stability constrained optimal power flow. 
IEEE Transactions on Power Systems, 29(5):2138–2149.



Conclusion
• In year 1, optimizing preventive-corrective 

control vs. uncertain hazards
– Allows better solutions across a wider set of 

contingencies than otherwise possible
– Serves as a foundation for dynamics-

informed resilience planning optimization 
against severe threats in following years

• Remaining key challenges:
– Improving realism and scale
– Stochastic (MINLP) mitigation planning 

• With realistic mitigations & resilience 
objectives (load shed, device damage, etc.)

• With protective tripping in dynamics (year 3)

• Relevance:
– Hybrid dynamic physics within an 

optimization model addresses key gaps
• Especially resilience planning for 

n-k emergencies

– Formulation and solution methods are 
relevant to other infrastructures and hybrid 
dynamical systems

– Insights regarding scalability, solution 
methods and discretization relevant to 
optimization community
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