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Inertia in Power Systems

= Synchronized operation
= Largely depends on “inertia’ from generators

"Rotational energy stored in the rotor
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* Whenever power imbalance occurs
* Rotational energy is released/absorbed
* Prevents over-speeding/under-speeding of the generator

= Keeps frequency within limits
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Effect of Renewables on Frequency Stability

M

Photovoltaic Power Plants Wind Power Plants

No Rotational Energy Coupled through power electronic converters
No Inertia Limited Inertia

= Displacement of conventional generation leads to frequency
stability 1ssues
= Large frequency deviations and Rate-of-Change-of- Frequency (ROCOF)
= Under Frequency Load Shedding (UFLS) relays can be triggered
= Causing cascaded tripping
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4 | Transition Towards an Inverter Dominated Power System

Generator Dominated
Power System
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= Evolution towards inverter dominated power system

* Typically non-dispatchable
"Inertia in power system getting reduced everyday

"= Penetration of renewables 1s limited due to stability concerns




5 I Uncertainty in Grid Inertia with Renewables
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" Inertia dependent on the number of synchronous generations at any given time
* Inertia variability more pronounced in microgrids

= Design of controllers and protection systems becoming challenging




6 | Inertia in Microgrids
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= Microgrid definition:
= %A small network of electricity users with a local source of supply that is usually attached to a centralized national
grid but is able to function independently”

= Lower inertia response - microgrids more prone to frequency stability problems




7 I Real World Events Due to Low Inertia: South Australian Blackout

= South Australian Blackout
" September 2018, 2016 — 850,000 people affected

= Multiple wind farms tripping due to a severe storm
= Rapid voltage/frequency events — prevented wind turbines
staying online
= Output of wind turbines fell by 456 MW over less than 7s

= Frequency plummeted — Cascaded Tripping

Source: Wind Farms Settings to Blame for SA Blackout. b/p:/ [ www.abe.net.an/ news/ 2017-03-28 | wind-farm-settings-to-blame-for-sa-blackont-aemo-says/ 8389920 [Online].

[S ource: Smart Power Electronic Converters May Help Stabilize the Grid. Available: bttps:/ [ spectrum.ieee.org/ energywise/ energy/ the-smarter-grid/ can-power-electronic-converters-lead-to-grid-stability [Online] ]
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Real World Events Due to Low Inertia: UK Blackout

= Great Britain experienced a
power outage — August 2019
= 1 million people affected for 15 - 45min

= Rail transit services and hospitals affected

" [ ow inertia the root cause

= System did not have enough fast-
trequency services procured
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9 | Basics of Energy Storage System
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= Components of Energy Storage Systems:
= Storage device (battery)
= Monitors and controls (Battery Management System — BMS)

= Power Conversion System (DC-AC conversion)

= Applications can range from high power to high energy

* Flexibility resource to improve grid reliability and resiliency




10 | Basic Concepts of Virtual Inertia

Virtual Inertia Emulation
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11 | Fast-Frequency Support through Virtual Inertia Using Energy Storage
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= In initial few seconds, no governor response

" Inertial response responsible to maintain power balance

" Decreased inertia means frequency changes and a large rate of change frequency (ROCOF)

= Trigger frequency relays = Cascade outage = Frequency instability

= Emulation of virtual inertia through power electronic converters
" Ensures the ROCOF is minimized

= Ensures frequency does not dip to low (or high)



12 I Generations of Virtual Inertia Development

Third Generation
System Level Coordination and Optimization

- Inertia estimation
- Coordination of multiple units with virtual inertia
- Optimal placement

First Generation
Development of novel topologies

- Frequency derivate-based: Virtual

g Synchronous Generators
Second Generation

Optimization Techniques - Dynamic model-based: Synchronous

- Model-free or model-based optimization  «'m» . power controller, Synchronverters

- Reduce energy/power requirements

- Reduce cost of deployment

U. Tamrakar, D. Shrestha, M. Mabarjan, B.P. Bhattarai, T.M. Hansen, and R. Tonkoski, "' Virtual inertia: Current trends and future directions," Applied Sciences: Advances in Integrated Energy Systems Design, i
Control and Optimization, vol. 7, no. 7, pp. 654, June 2017.
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Virtual Inertia: Case Study of a PV-Hydro Microgrid System

= 64 kW PV-hydro microgrid benchmark

= 39 kW hydro system with a 25 kWp PV system

= Hydro master unit which controls system frequency

" [nertia constant set to 2 s

= PV system model as current sources

"Power output depends on irradiance data input
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14 | Virtual Inertia: Case Study of a PV-Hydro Microgrid System

= Power to be injected/ absorbed calculated based Hydro System Model
on:
Excitation
System
d A(J) Hydraulic Q}D Electrical
PVSM = K ( ) + K (A(J)) + KSOC'(ASOC) Turbine \_/ B H Load
Sypchronos . %
Generator Qi >
= SOC (State of Charge) of battery maintained at / EEE— N
50% with the control loop so that ESS unit is : ks : Data et
always ready charge or discharge power : PLL :
: T dw| | ddwydt :
= Current controller then generates gate signals for ! o | e !
. 1 urrent ~ rej B - -re I
three phase inverter | ] I |
I\ ASOC II
= Transient analysis performed in OPAL-RT real N Lo LLLooooooils o
time digital simulator through software in the loop ESS Unit with Virtual Inertia

simulations

U. Tamrakar, D. Galipean, R. Tonkoski and 1. Tamrakar, "Improving transient stability of photovoltaic-hydro microgrids using virtnal synchronons machines," in IEEE Eindhoven PowerTech, Eindhoven, 2015, pp. 1-6,
doi: 10.1109/ PTC.2015.7232663.
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Frequency Variations and ROCOF due to Step Change in Irradiance

— With VI

i ————— T —— . T o
_____

3‘60-—-\ !

B s ERIR LRGN NRRARAARRARSARAANASANsNSSsAEsEEsAESASssEsEEsEEsEEsEEsSEsEEEEEEEEns

100 120 140 160 180

Time (secs)

o wioorur| < ROCOFimo= 8.2 Hzls ISO 8528-5
— withv1 | | Recommendations
! ROCOF max= 0.6 Hz/s i for Gensets
¥ |
fi// li 0.6 Hz/;s Normal frequency range = £2.5%
______________ oy Critical frequency range = +15%
______________T‘_:‘_"?_:f ____________ - Recovery time = 10's
11 |
i : Max. ROCOF = 0.6 Hz/s
¥ | ( Ref.:ISO Standard 8528-5 )
|
0 50 100 150 200 250
Time (secs)

= Step change in irradiance from 750 W/m? to 250 W/m? @ 100 s

"Minimum frequency deviation reduced from 51.6 Hz to 59.1 Hz.

" Maximum frequency deviation reduced from 64.2 Hz to 60.1 Hz .
= Peak ROCOF reduced from 8.2 Hz/s to 0.6 Hz/s.

= Reductions within recommended levels, prevents unnecessary frequency relay tripping.



16 | Frequency Variations and ROCOF due to a Real Irradiance Pattern
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= Frequency variations due the real irradiance changes reduced to within recommend limits
* Peak ROCOF reduced from 4.8 Hz/s to 0.7 Hz/s slightly above the recommended limit

= Sufficient to prevent relays from tripping

5



17 I Need for Model Predictive Fast Frequency Support

QoS - Reduction in frequency deviation and

ROCOF
Quality-of-Service Power/Energy ESS Degradation/
(QoS) Requirement Cost
High QoS ----
Low QoS ----

Y

Bounded by physical limits of ESS




18 I Model Predictive Fast Frequency Support Using Energy Storage

= Objective: Design a control framework to provide near-optimal fast frequency support using ESSs

[ Desired Features }

Flexible to change performance based on resource

availability and/or desired quality of service (QoS)

Able to incorporate physical constraints of the ESS (Power ,
Ramp-Rate Limits)

2N .
4 f Adapt to chanoing system parameters
D = p, =3 p— -~ = A




19

Basic Concepts of Model Predictive Control

Next Time Instant = q+1

Time Instant = q

= Optimal control action computed based on prediction from a system model
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= Cost function 1s defined to optimize system (reduce deviation, reduced power usage)

= Prediction horizon moves one-time step

= Optimization reruns to calculate new optimal control

5



20 I A Predictive Model Representing Power System Frequency Dynamics

—~

o Kz Secondary
S Control
Loop

Ap

[\ Primary Control
Loop

Aw

= Approximate model for an isolated microgrid:
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[ A. Ingalalli, U. Tamrakar, T. M. Hansen and R. Tonkoski, "Modeling Hydro Power System Frequency Dynamics for Virtual Inertia Emulation," in IEEE 28th International Synposinm

on Industrial Electronics (ISIE), Vancouver, BC, Canada, 2019, pp. 2565-2570. (Best Presentation Award)

I D e
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Formulation of Model Predictive Controller

Next sampling instant

Predictive Model
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5



22 I Simulation Study : Model Predictive Fast Frequency Support
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U. Tamrakar, T. M. Hansen, R. Tonkoski and D. A. Copp, "Model Predictive Frequency Control of Low Inertia Microgrids," in IEEE 28th International Synposinm on Industrial Electronics (ISIE), Vanconver,
BC, Canada, 2019, pp. 2111-2116, doi: 10.1109/ISIE.2019.8781263

|



23 | Effect of Weighting Parameters on Fast Frequency Support

= Selection of ‘QQ” and ‘R’ effects performance

* Number of simulations by varying Q11 and
Q22 performed

Frequency
Event

Recovery/Settling Time ):

fnadir
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24 I Test System : Cordova, Alaska

ORCA 5
(1.5 MVA)
M=330s PV System
ORCA SS Humpback Creek Pset
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: = |« 26| MmPC
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I |
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I |
IMW 2MW —m e
Based Step Energy Storage
load Change System (3 MW)

Modified Test System from Cordova, Alaska fummemared [Eadeitationsystmn

* Thee diesel-gensets, 1| MW PV = Reduces system inertia
= 3 MW ESS

* Detailed models implemented MATLAB\Simulink

= To verify simplified predictive model is sufficient

" Combined MHE-MPC framework implemented in the 3 MW ESS

U. Tamrakar, D. A. Copp, T. Nguyen, T. M. Hansen and R. Tonkoski, "Optimization-Based Fast-Frequency Estimation and Control of Low-Inertia Microgrids," IEEE Transactions on Energy Conversion:
Model Predictive Control in Energy Conversion (submitted, under review).




25 I Operational Flexibility of the Model Predictive Controller

/
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= ESS operator can change dynamic performance

* Based on available resources
= Desired QoS ( Desired frequency or ROCOF reduction)
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26 I Operational Flexibility of the Model Predictive Controller

N = 50; Sampling Time = 0.02 s , Q = diag(0.1,0.9)
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5 W
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x Vi : A /2
L V] R=0.001 e v 0
20— I 1 L L | | |
time [s] time [s] time [s]

(a) (b) (c)

= ESS operator can change R value to put a “cos?’ on the ESS power output
= Example:

* Higher QoS is desired

= ESS operator uses R = 0.001

* Higher reduction in frequency and ROCOF (improved QoS)

* Higher peak-power/ energy usage per event

= Fast ESS lifetime degradation! = OK, if incentives are in place
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Constraint Handling Capabilities

N = 50; Sampling Time = 0.02 s ,

Q = diag(0.1,0.9)
R = 0.001

= Assumption:

" Peak power-limit = 0.10 p.u. (0.3 MW)

= Physical limit of ESS

= Limited for other ESS services like arbitrage

" Lower QoS

" Low power/energy usage
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28 I Conclusions

= High renewable penetration = Reduction in Inertia
= Compromises frequency stability and system reliability

= Numerous inertia emulation technologies developed in literature

= Advancements focused on improving dynamic response while reducing power/energy needs

= Future research on optimizing and coordinating inertia resources needed
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