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2 I Inertia in Power Systems

• Synchronized operation
• Largely depends on "inertia" from generators

oRotational energy stored in the rotor
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3 I Effect of Renewables on Frequency Stability
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Photovoltaic Power Plants

No Rotational Energy

No Inertia

Wind Power Plants

Coupled through power electronic converters

Limited Inertia

• Displacement of conventional generation leads to frequency
stability issues
• Large frequency deviations and Rate-of-Change-of- Frequency (ROCOF)

• Under Frequency Load Shedding (UFLS) relays can be triggered

• Causing cascaded tripping

•



4 I Transition Towards an Inverter Dominated Power System

High
Imerrt

• Evolution towards inverter dominated power system

• Typically non-dispatchable

Inertia in power system getting reduced everyday

Penetration of renewables is limited due to stability concerns



5 I Uncertainty in Grid Inertia with Renewables
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Daily inertia variations from the UK grid
Source: X. Cao, B. Stephen, I. F. Abdulhadi, C. D. Booth and G. M. Burt, "Switching Markov Gaussian
Models for Dynamic Power System Inertia Estimation," IEEE Transactions on Power Systems, vol.

31, no. 5, pp. 3394-3403, Sept. 2016.
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Seasonal variation in inertia of ERCOT

Source: ERCOT (2018) Inertia: Basic Concepts and Iinpacts on the ERCOT Grid
http:1 / www.ercot.com I content/ wcm I lists/144927 Inertia_Basic Concepts_Impacts On_ERCOT vapdf

• Inertia dependent on the number of synchronous generations at any given time

Inertia variability more pronounced in microgrids

• Design of controllers and protection systems becoming challenging



6 Inertia in Microgrids

Lack of
Interconnection

Limited Mechanical
Rotational Inertia

High Intermittent
Renewable
Penetration

Microgrid definition:
- 'A small network of electricio users with a local
grid but is able to function independently"

• Lower inertia response - microgrids more prone to frequency stability problems

r,00*.400ne rg y Storage,

source of supply that is usualy attached to a centralked national



7 I Real World Events Due to Low Inertia: South Australian Blackout

South Australian Blackout
September 2018, 2016 — 850,000 people affected

Multiple wind farms tripping due to a severe storm
• Rapid voltage/frequency events — prevented wind turbines

staying online

• Output of wind turbines fell by 456 MW over less than 7s

• Frequency plummeted — Cascaded Tripping

Source: Smart Power Electronic Converters May Help Stabilize the Grid. Available: ht s:/ / spectrum.ieee.org/ energyniise/ energy/ the-smarter-grid/ can-polver-electronic-converters-lead-to-grid-stabili0  [Online]
Source:Wind Farms Settings to Blame for SA Blackout. bto:/ /2,vivw.abc.net.au/ news/ 2017-03-28/ windfarm-settings-to-blame-for-sa-blackout-aemo-says/ 8389920 [Online].



8 I Real World Events Due to Low Inertia: UK Blackout

Great Britain experienced a
power outage — August 2019

I 1 million people affected for 15 - 45min
• Rail transit services and hospitals affected

■ Low inertia the root cause
• System did not have enough fast-

frequency services procured

Transmission network frequency during outage event
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9 I Basics of Energy Storage System

Storage
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■ Components of Energy Storage Systems:
Storage device (battery)

Monitors and controls (Battery Management System — BMS)

• Power Conversion System (DC-AC conversion)

• Applications can range from high power to high energy

• Flexibility resource to improve grid reliability and resiliency

Grid Scale Energy Storage Applications

High Power

Power Quality
improved Grid Resilience

Voltage & F requency

Regulation

Transient Smoothing

Reactive Power Control

High Energy

Energy Management

Decouple Generation From Demand

Discharge Duration

Synchronous Reserve

Uninterruptible

Power Supply

Black Start

Load Levelling

Peak Shaving

Energy Trading

island Operation

Entegration of Renewables



10 I Basic Concepts of Virtual Inertia

Combination of control algorithms,
energy storage systems, RESs and
power electronics that emulates
inertia

Equation to emulate synchronous generator behavior

d
PsI Kpiaf dt

41111 Damping Constant

- Similar to frequency
droop

- Returns frequency to
steady state value
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11 I Fast-Frequency Support through Virtual Inertia Using Energy Storage
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• In initial few seconds, no governor response
• Inertial response responsible to maintain power balance

• Decreased inertia means frequency changes and a large rate of change frequency (ROCOF)

• Trigger frequency relays 4 Cascade outage 4 Frequency instability

Kmulation of virtual inertia through power electronic converters
• Ensures the ROCOF is minimized

• Ensures frequency does not dip to low (or high)



12 Generations of Virtual Inertia Development

Third Generation
System Level Coordination and Optimization

- Inertia estimation

- Coordination of multiple units with virtual inertia

- Optimal placement

 1
Second Generation
Optimization Techniques

- Model-free or model-based optimization

- Reduce energy/power requirements

- Reduce cost of deployment

First Generation
Development of novel topologies

- Frequency derivate-based: Virtual

Synchronous Generators

- Dynamic model-based: Synchronous

power controller, Synchronverters

U. Tamrakar, D. Shrestha, M. Mahaan, B.P. Bhattarai, T.M. Hansen, and R. Tonkoski, "Virtual inertia: Current trends and future directions," Applied Sciences: Advances in Integrated Energy Systems Design,

Control and Optimization, vol. 7, no. 7, pp. 654,June 2017.



13 I Virtual Inertia: Case Study of a PV-Hydro Microgrid System

64 kW PV-hydro microgrid benchmark

• 39 kW hydro system with a 25 kWp PV system

• Hydro master unit which controls system frequency

• Inertia constant set to 2 s

PV system model as current sources

oPower output depends on irradiance data input
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14 I Virtual Inertia: Case Study of a PV-Hydro Microgrid System

Power to be injected/ absorbed calculated based
on:

PVSM = KL 
d(Aw) 

+ (OW) KSOC(ASOC)dt

• SOC (State of Charge) of battery maintained at
50% with the control loop so that 1-4,SS unit is
always ready charge or discharge power

• Current controller then generates gate signals for
three phase inverter

• Transient analysis performed in OPAL-RT real
time digital simulator through software in the loop
simulations

Hydro System Model

Hydraulic
Turbine

Governor

Excitation
System

3 Phase
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Generator

♦
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o P LL 

PV
System

• Model
• 25 kWp
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Current
Control
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PLL
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ESS Unit with Virtual Inertia

Electrical
Load

Irradiance
Data Input

U. Tamrakar, D. Galipeau, K. Tonkoski and I. Tamrakar, "Improving transient stabilio of photovoltaic-hydro microgrids using virtual synchronous machines," in IEEE Eindhoven PowerTech,Eindhoven, 2015, pp. 1-6,
doi: 10.1109 / PTC.201 5.7232663.



15 Frequency Variations and ROCOF due to Step Change in Irradiance
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ISO 8528-5
Recommendations

for Gensets

Normal frequency range = ±2.5%
Critical frequency range = ±I5%
Recovery time = 10 s
Max. ROCOF = 0.6 Hz/s
( Ref : ISO Standard 8528-5 )

• Step change in irradiance from 750 W/m2 to 250 W/m2 @ 100 s

oMinimum frequency deviation reduced from 51.6 Hz to 59.1 Hz.

Maximum frequency deviation reduced from 64.2 Hz to 60.1 Hz .

Peak ROCOF reduced from 8.2 Hz/s to 0.6 Hz/s.

Reductions within recommended levels, prevents unnecessary frequency relay tripping.



16 I Frequency Variations and ROCOF due to a Real Irradiance Pattern
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Frequency variations due the real irradiance changes reduced to within recommend limits

• Peak ROCOF reduced from 4.8 Hz/s to 0.7 Hz/s slightly above the recommended limit

• Sufficient to prevent relays from tripping



17 Need for Model Predictive Fast Frequency Support

High QoS

Low QoS

QoS 4 Reduction in frequency deviation and
ROCOF

Quality-of-Service Power/Energy ESS Degradation/
(QoS) Requirement Cost
 1

-I-
Bounded by physical limits of ESS



18 Model Predictive Fast Frequency Support Using Energy Storage

- Objective: Design a control framework to provide near-optimal fast frequency support using ESSs

Desired Features

Flexible to change performance based on resource

availability and/or desired quality of service (QoS)

Able to incorporate physical constraints  of the ESS (Power ,
Ramp-Rate Limits)

Adapt to changing 4ystem parameters



19 I Basic Concepts of Model Predictive Control

Time Instant = q

Prediction
Horizon

q q+1

Predicted
Frequency

q+T-1

Referenœ
Frequency

Next Time Instant = q+1

E
w
"V; g
"

CD ILL

Predicted
Frequency

ore00 ip•-• - - -
••
• •
•

Prediction
Horizon

q q+1 q+T-1

Reference
Frequency.

• Optimal control action computed based on prediction from a system model

• Cost function is defined to optimize system (reduce deviation, reduced power usage)

• Prediction horizon moves one-time step

• Optimization reruns to calculate new optimal control



20 I A Predictive Model Representing Power System Frequency Dynamics
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A. Ingalalli, U. Tamrakar, T. M. Hansen and B. Tonkoski, "Modeling Hydro Power System Frequency Dynamics for Virtual Inertia Emulation," in IEEE 28th International Symposium
on Industrial Electronics (ISIE), Vancouver, BC, Canada, 2019, pp. 2565-2570. (Best Presentation Award)



21 I Formulation of Model Predictive Controller
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22 Simulation Study : Model Predictive Fast Frequency Support

Power system model implemented in
MATLAB \ Simulink

• MPC implemented using:

• ACADO Code-generation Toolkit

Simulation Parameters

Parameter Values

Inertia constant (M) 4 s

Damping coefficient (D) 1.5%

Speed regulation droop (Rp) 5%

Turbine-Governor time constant (Tg) 0.2 s

Sample time (r) 0.02 s

Prediction and Control Horizon (T) 1 s
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U. Tamrakar, T. M. Hansen, R. Tonkoski and D. A. Copp, i'Model Predictive Frequeng Control of Low Inertia Microgrids," in IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver,
BC, Canada, 2019, pp. 2111-2116, doi: 10.1109 / ISIE.2019.8781 263



23 Effect of Weighting Parameters on Fast Frequency Support

• Selection of ̀ Q' and ̀ R' effects performance

• Number of simulations by varying Q11 and
Q22 performed
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t n

• Q11 = 0.7 and Q22=0.5

•Good trade-off between frequency and
ROCOF reduction and power requirement

oProvides intuitive approach to control
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24 Test System : Cordova, Alaska

ORCA 5
(1.5 MVA)
M = 3.30 s

o
ORCA 4
(3 MVA)
M = 1.88 s

o
ORCA 3
(3 MVA)
M = 1.88 s

ORCA SS
(12.47 kV)

Humpback Creek
SS (12.47 kV)

PV System
(1 MWp)

Aco

AGC r

Only on

ORCA 3 I. (G) I
■

3 um 2 MW

Based Step

Load Change
Energy Storage

System (3 MW)

Modified Test System from Cordova, Alaska

• Thee diesel-gensets, 1 MW PV 4 Reduces system inertia
• 3 MW ESS

• Detailed models implemented MATLAB\Simulink

• To verify simplified predictive model is sufficient

- Combined MHE-MPC framework implemented in the 3 MW ESS

Governor and Excitation System

U. Tamrakar, D. A. Copp, T. Nguyen, T. M. Hansen and R. Tonkoski, "Optimkation-Based Fast-Frequeng Estimation and Control of Low-Inertia Microgrids," IEEE Transactions on Enev Conversion:
Model Predictive Control in Enev Conversion (submitted, under review).



25 I Operational Flexibility of the Model Predictive Controller

N = 50; Sampling Time = 0.02 s

Penalize states:
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26 I Operational Flexibility of the Model Predictive Controller

N = 50; Sampling Time = 0.02 s , Q = diag(0.1,0.9)
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• ESS operator can change R value to put a "cost" on the ESS power output

• Example:

• Higher QoS is desired

• ESS operator uses R = 0.001

• Higher reduction in frequency and ROCOF (improved QoS)

• Higher peak-power/ energy usage per event

• Fast ESS lifetime degradation! 4 OK, if incentives are in place
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27 I Constraint Handling Capabilities

N = 50; Sampling Time = 0.02 s ,
Q = diag(0.1,0.9)

R = 0.001

Assumption:
Peak power-limit = 0.10 p.u. (0

Physical limit of ESS

• Limited for other ESS services

Lower QoS

• Low power/energy usage

.3 MW)
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28 I Conclusions

High renewable penetration = Reduction in Inertia

Compromises frequency stability and system reliability

Numerous inertia emulation technologies developed in literature
- Advancements focused on improving dynamic response while reducing power/energy needs

- Future research on optimizing and coordinating inertia resources needed
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