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 Motivation and Framework

Materials variables
- 3 heats of X80 with diverse microstructure

Mechanics variables
- Testing methods for accelerated fatigue testing
- Effect of loading ratio (R)
- Fracture

Environmental variables
- Effect of pressure

Master Design Curve concept C [2)



Hydrogen is one method to decarbonize natural gas networks
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Motivation

With growing interest
in decarbonization,
hydrogen is being
considered as a
means to reduce
carbon in energy
infrastructure

Challenge

Hydrogen degrades

fatigue and fracture
resistance of steels,
and the effects on
pressure vessel and
line pipe steels are
significant

Environment
* Partial pressure

* Impurities

* Temperature

Materials
» Strength

e Microstructure and
homogeneity

Mechanics

» Stress

* Defects

» Stress (pressure)
cycling

* Residual stresses

Hydrogen embrittlement occurs in materials unr’
the influence of stress in hydrogen environmE,.\______




X80 _-=‘_teels W|th arange of mlcrostructure were tested
“ Materials variables

Polygonal Ferrite (PF)
Acicular Ferrite (AF) &&&

Heat B Heat E Heat F
PF - 10% AF Fine AF AF - 30% PF
Yield strength YS = 593 MPa YS =552 MPa \
(YS) = 565 MPa Mo additions ~0.15 wt% _[?2)

: Vintage of all 3 materials: 2000s |




Testing framework: structural integrity assessment

~utilizing fracture mechanics-based analysis
Rupture determined by

Critical fracture resistance (K,;)
flaw \ \
cU aC ________________________ A
PR 8 |
pressure n :
PN i
ol \ |
Initial - Number of pressure cycles, N\INC "
flaw Evolution of flaw size determined by
fatigue crack growth (AK-da/dN data)
ASME B31.12 describes rules for hydrogen pipelines with —/

reference to ASME BPVC Section VI, Division 3, Article KD- 10




K-control fatlgue crack growth tests enable efficiency
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Mechanics variables

ASTM E647 fatigue crack growth methods
using compact tension geometry

* B~12mm (~11mm w/ side grooves)
« W~26 mm

« C control, both K-increasing (C+)
and K-decreasing (C-)

 Constant C test segments



K-increasing and K-decreasing segments show same

fatigue behavior Mechamcs variables

-5 - L] -
0 e « K-increasing and K-decreasing
C  heatB (X80 ° R .
i 210 basz) O s | segments provide same da/dN-AK
- f=1Hz E? response
-6 - -
0k ; - As long as K__,_is restricted to
© moderate values
o
3 o K.x <30 MPa m'2 for R=0.5
£ 107} . —
= Single test specimen 0 Kpax <35 MPam'2forR=0.7
= y : - Perhaps a slight reduction in da/dN
© | . .
- for K-decreasing from higher K.,
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- -] . . .
R=07 oo C=+024mm ) deduction in test timet
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Using these methods, several values of load ratio (R)

- can be evaluated in a single ) )
echanics variables

10° ———— . S ; . .
2 ' _ 7205 ¢ 1 * Inthis test, three load ratios were
" heat E (X80) R=07 7/ . VARRE
- 34barH, /7 evaluated
i » including the influence of
107 L

frequency for R =0.7

* Unlike tests in air and general
recommendations in the codes, R has
an effect on da/dN in hydrogen

da/dN (m/cycle)
3

* Higher frequency does not

10°L Single test specimen necessarily affect da/dN for low AK
o R=0.1 ]
o . RZ0S 1 | Outcomes:
17 7 ® R=07(10Hz) | ] * Influence of R should not be ignored _
9 AL L. I . . ° s
"% 7 s o010 20 20 20 Frequency can further improve t tmg
AK (MPa m'?2) efficiency in some cases R




Fracture resistance measu_rements

Fracture resistance, KJQH (MPa m”z)
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Error bars represent previously reported fracture
resistance, measured at higher rate

Mechanics variables

ASTM E1820 elastic-plastic fracture
measurements at the conclusion of
fatigue testing

* Fracture resistance values are
relatively consistent

* Potential slight bias to PF
microstructure

B~12mm

By ~ 11 mm (w/side grooves)
W ~ 26 mm

0.005 mm/min constant displ.
DCPD

)

Heat
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Hydrogen partial pressure has an effect on da/dN
' ' —— ““% Environmental variables
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- heat E (X80) pindependgent | * Hydrogen pressure can affect fatigue
- R=01 ]
f=1Hz : crack growth:
10°L i - At low AK, fatigue crack growth
. rate is dependent on hydrogen
3 pressure
a i
€ 107, __ - At high AK, fatigue crack growth
z : rate is independent of pressure
®
-c F
10°} 7 ] 1 | Outcome:
[ ressure ] .
b= 210 bar 7 2® - - H, partial pressure has a
o 210 bar . .
_ ,/ ot bar @ 34bar | | complicated (but predictable)
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Master Design Curves bound the fatlgue crack growth

behavior of line pipe steel

-
o
A

T
21 MPaH,

s [ —o * The effects of pressure and load ratio on fatigue crack
g = growth are captured in conventional power law
g formulation :
2w ] - da _1¢ [1+0.4286R
g o At low AK, — =76x10"16 —] AK 6 5f1f2
2 ] dN !
° . K (MPa m'?)
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g [ 7 | _ :
g = ?\06""’ .+ These Master Design Curves appear to be effective for
3 a wide range of construction steels
§ . Ref: San Marchi et al, PVP2019-93803
s 3
£ & 4 _: Outcome: P
0 j  Master Design Curves provide a simple framewor" ¢
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* Testing was performed for three
values of R and at 2 pressures for all
three heats of X80

* Materials: 3 heats of X80
* Mechanics: R=0.1,0.5and 0.7
* Environment: 34 and 210 bar H,

Outcomes:
K-control enables testing efficiency

H, partial pressure has a complicated

response and modest effect on |—\.\

* All three heats of X80 perform similarly
* Influence of R should not be ignored

(but predictable) influence on fatis e

&

fracture
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