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ABSTRACT: This paper presents the formulation, implementation, and demonstration of a new, largely phe-
nomenological, model for the damage-free (micro-crack-free) thermomechanical behavior of rock salt. Unlike most
salt constitutive models, the new model includes both drag stress (isotropic) and back stress (kinematic) hardening.
The implementation utilizes a semi-implicit scheme and a fall-back fully-implicit scheme to numerically integrate the
model’s differential equations. Particular attention was paid to the initial guesses for the fully-implicit scheme. Of
the four guesses investigated, an initial guess that interpolated between the previous converged state and the fully
saturated hardening state had the best performance. The numerical implementation was then used in simulations that
highlighted the difference between drag stress hardening versus combined drag and back stress hardening. Simulations
of multi-stage constant stress tests showed that only combined hardening could qualitatively represent reverse (inverse
transient) creep, as well as the large transient strains experimentally observed upon switching from axisymmetric com-
pression to axisymmetric extension. Simulations of a gas storage cavern subjected to high and low gas pressure cycles
showed that combined hardening led to substantially greater volume loss over time than drag stress hardening alone.

1 INTRODUCTION

time integration of stiff ODEs leads to small time
steps due to numerical stability limitations. Fully-
implicit time integration, on the other hand, avoids
such stability limitations, but it can be computa-

Rock salt constitutive models are used to simulate
the evolution of mines, boreholes, storage caverns for

gases and liquids, and nuclear waste repositories in
rock salt formations. A wide variety of models have
been proposed for rock salt, yet even the damage-
free (micro-crack-free) thermo-viscoplastic behavior
remains difficult to capture. The Munson-Dawson
model, for example, was recently extended in Reed-
lunn et al. (2022), but it still cannot capture mono-
tonic hardening behavior over the full range of strain
rates typically utilized in laboratory tests (107!2
to 107* 1/s), or transient non-monotonic harden-
ing behaviors, such as the Bauschinger effect and
reverse (inverse transient) creep (Reedlunn, 2020,
Section 1).

Numerical integration of most salt constitutive
models is also a challenging endeavor, because the
ordinary differential equations (ODEs) are usually
highly non-linear and “stiff”. (See Press et al. (2007,
Section 17.5) for a discussion of stiff ODEs.) Explicit

tionally demanding and does not always converge.

This paper presents a new rock salt constitu-
tive model (Section 2), a method to numerically in-
tegrated it (Section 3), and demonstrations of its
behavior (Section 4). Model development was in-
fluenced by a variety of models for metals (see J.
Chaboche (2008) for a review) and the Yahya et
al. (2000) model for salt. The model formulation
was recently presented in Reedlunn (2022), but it
is repeated herein for completeness. The numerical
implementation strives for computational efficiency
and robustness through use of carefully selected nu-
merical techniques. The demonstrations involve cy-
cling loading in order to draw out the difference
between pure drag stress (isotropic) hardening vs.
combined drag and back stress (isotropic and kine-
matic) hardening. Back stress hardening is not in-
cluded in many salt constitutive models, but Reed-
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lunn (2022) showed the addition of a back stress al-
lowed the model to capture salt behavior over strain
rates ranging from 1072 to 107 1/s at tempera-
tures from 293 to 333 K, as well as the Bauschinger
effect.

2 MODEL FORMULATION

Several preliminaries bear mentioning before defin-
ing the model formulation. First, compressive
strains and stresses are treated as positive. Second,
variables represented by capital letters are material
constants, while variables represented by lower case
letters are functions of other variables. Third, this
section presents the model in an infinitesimal strain
setting for simplicity, but the model can be easily
extended into the finite deformation realm using hy-
poelasticity.

The model additively decomposes the total
strain rate € into an elastic strain rate €%, a thermal
strain rate é", and a viscoplastic strain rate &"P:

g =g e q e (1)

The elastic behavior utilizes generalized Hooke’s law
in rate form to relate €%, the fourth-order isotropic
elastic stiffness tensor E, and the stress rate o

c=E:e'=E: (¢ —&"—&"P) (2)
E=(E - 2E)I®I+2E], (3)

where F4 is the bulk modulus, Es is the shear mod-
ulus, I is the second-order identity tensor, and I
is the fourth-order symmetric identity tensor. The
thermal strain portion of the model is simply

eth = —A01, (4)

where A is the coefficient of thermal expansion, and
0 is the absolute temperature. The viscoplastic
strain rate is additively decomposed into a pressure
solution strain rate € P® and a dislocation glide strain
rate &9

EP =¢gPs 4 ¢de, (5)

The €P° branch captures steady-state viscoplas-
tic behavior at low stresses. This branch utilizes the
following flow rule:

. OgPps
&pbs — gps aga , (6)

where éP* and P are the equivalent pressure so-
lution strain rate and stress, respectively. Pressure
solution viscoplasticity is taken to be independent of

the mean stress 0™ = tr(o)/3 and driven entirely by
the deviatoric stress o4¢V, so the pressure solution
stress is simply

oP =0l =0g—-c"I. (7)

This deviatoric stress tensor is reduced to a scalar
equivalent (von Mises) pressure solution stress as

G = /3P 0P (8)

The equivalent pressure solution strain rate is given

by
. P\ &Ps
EPS = P exp <—92) 09 , (9)

where P; are material constants (Spiers et al., 1990).
Eq. (9) assumes any non-zero 6P° causes pressure
solution flow, such that the pressure solution quasi-
static (rate-independent) yield surface is simply a
point at o = 0.

The dislocation glide branch & 9¢ dominates tran-
sient viscoplastic behavior at low stresses, and all
viscoplastic behavior at medium to high stresses.
Dislocation glide utilizes the following flow rule,

. 4o 05 8
:dg __ ~dg 1

where £98 and 598 are the equivalent dislocation
glide strain rate and stress, respectively. In contrast
to the pressure solution branch and the majority
of other salt models, the model assumes dislocation
glide is driven by a dislocation glide stress

=gl —p (11)

o
that includes b, a second-order tensor called the back
stress. In the metals literature, the dislocation glide
stress and back stress are also known as the effec-
tive stress and internal stress, respectively*. With
the definition in Eq. (11), the equivalent (von Mises)
dislocation glide stress is

gl =/30 0, (12)
Unlike the pressure solution branch, the dislocation
glide branch has a finite size, quasi-static, yield sur-
face, defined as

g=35%—Goy, (13)

where G is a material constant and y is an isotropic
hardening variable called the drag stress that evolves
from a positive initial value Y to some positive
value. By default, Go = E5x1071%/Yj, which makes

*This effective stress should not be confused with the Terzaghi effective stress utilized in the poromechanics literature.



the g = 0 surface typically very small relative to & 8.
The equivalent dislocation glide strain rate is

0 for g <0

~ dg Gs ,
G1 exp (—G2> [sinh <0>] for g >0
0 Yy
(14)

gde =

where G; are material constants. The g > 0 ex-
pression applies for both transient and steady-state
creep, but it is motivated by the classic steady-state
creep expression by Garofalo (1963).

The drag stress y evolves according to the fol-
lowing differential equation:

5 7! (16)

sini { ] I/GS}

is the drag stress saturation (g > Yp),

tdg 1/Y5
5 =Y, sinh™! c
7= s {[Yg EEel } "

is the equivalent (von Mises) stress saturation, b is
the equivalent back stress saturation (discussed be-
low), and Y; are material parameters.

The back stress has a similar, yet different, set
of evolution equations. Following J.-L.. Chaboche
(1986), b is decomposed as

b=> b, (18)

=1

where

where by is a short range, quickly evolving, back
stress and bs is a long range, slowly evolving, back
stress. Each back stress has an equivalent back stress
defined as

bj == 9 bj . bj. (19)
Each back stress begins at B,o, which must be de-
viatoric (tr(Bjo) = 0) and is set to the zero tensor
0 by default. As deformation proceeds, each back
stress evolves according to

. 2 b .
bj:le 7édg_77Jédg ’ (20)
3 b;

where

Bj = Bjs Bj3 tanh (U) (21)
B;

is the j*™ equivalent back stress saturation and Bjy,
are material constants. Analogous to Eq. (18), the
equivalent back stresses can be summed as

b= b;. (22)

All materials parameters should be non-negative
to obtain typical material behavior. Furthermore,
2
Pl; G17 Y17 Y37 Y47 Y67 Bj27 Bj37 and 1 _ijl B]2
each must be non-negative to ensure y, 4, b;, o, €P®,
£98 are each non-negative.

2.1 Discussion

A thorough discussion of the model formulation will
be published at a later date, but some aspects are
important enough to list here:

1. The model assumes that €P® and €98 are
largely independent processes because pres-
sure solution occurs along the grain bound-
aries, while dislocation glide occurs inside the
grains.

2. The pressure solution branch consists solely of
steady-state deformation, without any hard-
ening (transient strain). This means b and y
in the dislocation glide branch are responsible
for all hardening.

3. Some loose physical meaning can be attached
to b and y. The back stress represents kine-
matic hardening due to heterogenously dis-
tributed dislocation substructures, such as
sub-grains and wavy slip bands produced by
dislocation climb and cross-slip, respectively
(Carter et al., 1993). These substructures are
commonly observed at low to medium strain
rates (10712 < &Y < 107® 1/s) and low
to high temperatures (293 < 6 < 973 K).
The drag stress represents isotropic harden-
ing due to more uniform dislocation distribu-
tions, as are observed at higher strain rates
over the same temperature range (Raj and
Pharr, 1989).

4. Both hardening evolution equations (Egs. (15)
and (20)) conform to the Bailey-Orowan con-
cept, in which the hardening rate is the result
of a competition between a strain hardening
term and a strain (a.k.a. dynamic) recovery
term. Hardening saturates when the hard-
ening and recovery rates balance one another
(=0 and b; = 0).



5. During proportional loading and at hardening
saturation, the stresses o 9¢V and b are co-
axial, so Egs. (11) and (12) reduce a scalar
equation:

598 =5 —b. (23)

6. At hardening saturation, I;j = I_)j, y = g, such
that Eqgs. (14), (16), (17) and (23) combine to
give ¢ = ¢. Inverting the expression for & in
Eq. (17) results in the Garofalo (1963) steady-
state dislocation glide strain rate expression:

£98 — v5 exp <—C;2> {sinh (;4)]% . (24)

2.2  Calibrations

Reedlunn et al. (2022) presented four calibrations
of this model against tests on Waste Isolation Pi-
lot Plant salt at 293 < 0 < 333 K. Two of the
four calibrations are utilized herein: Calibration 1A1
and Calibration 1C. Both calibrations have the same
steady-state strain rate behavior. Calibration 1A1
uses only drag stress hardening to capture constant
stress tests with 10 < ¢ < 18 MPa. Calibration 1C
uses both drag and back stress hardening to capture
constant stress tests with 4 < & < 18 MPa and con-
stant strain rate tests at rates ranging from 1076 to
10~% 1/s. As one might expect, Calibration 1C more
accurately captures the transient strains correspond-
ing to constant stress tests with 4 < g < 8 MPa.

3  NUMERICAL IMPLEMENTATION

The model was implemented in Sandia’s
Sierra/SolidMechanics (2021) code using the C++
programming language. Sierra’s hypoelastic frame-
work uses the Green-Mclnnis rate of the Cauchy
stress and integrates constitutive models in the un-
rotated configuration. This approach replaces the
strain rates and stress rates in Section 2 with the
unrotated rate of deformation and the unrotated
rate of the Cauchy stress. In the absence of rota-
tions, the unrotated rate of deformation coincides
with the logarithmic strain rate and the unrotated
Cauchy stress rate coincides with the Cauchy stress
rate.

As mentioned in Section 1, viscoplastic models
are notoriously difficult to numerically integrate be-
cause the ODEs are stiff. The implementation of
the model pursued herein first attempts to integrate
the ODEs with a Richardson extrapolation of the

semi-implicit backward Euler method!, and, if that
approach fails, then employs the fully-implicit back-
ward Euler method.

The Richardson extrapolated semi-implicit back-
ward Euler method is clearly demonstrated in Hof-
stetter (2014, Chapter 1), but a short summary fol-
lows. The method approximates the time deriva-
tives with backward Euler expressions, thus creating
a system of non-linear algebraic equations. These al-
gebraic equations are first approximately solved in
one large step over the full time interval, produc-
ing a solution ;. The algebraic equations are then
approximately solved again over the same time in-
terval, except it is broken into two half sub-steps,
thereby producing a more accurate solution xo. In
both cases, the solutions x; and x5 are arrived at us-
ing only one Newton iteration per time step, or per
half time step, to reduce computational cost. The
Richardson extrapolation of the two solutions to a
second order-accurate solution, with respect to time,
turns out to be simply & = 2 x5 — ;. Furthermore,
having two solutions allows one to obtain an error
estimate e = xy — x1. If the error is acceptable,
then a norm of e is compared against accuracy tar-
gets to suggest the next time step size to the host
code (either a material point driver or a momentum
balance code). This adaptive time stepping makes
the host code take small time steps when the so-
lution is changing rapidly and large steps when the
solution is changing gradually. If the error e is unac-
ceptable, then the model implementation falls back
to the fully-implicit backward Euler method.

In the fully-implicit backward Euler method, the
same system of non-linear algebraic equations are
solved over the full time interval using an iterative
solver. The iterative solver utilized herein is New-
ton’s method, coupled with a line search routine,
similar to that described in Reedlunn (2018, Chap-
ter 3). The iterations start from some initial guess
xy and continue until the error is sufficiently small,
or the maximum number of iterations is reached. If
the fully-implicit scheme converges, the model im-
plementation accepts the solution and suggests a
smaller time step to the host code for the next time
step to give the semi-implicit scheme a higher chance
of success on the next time step.

The number of iterations ny, for the fully-
implicit scheme to converge to an acceptable solu-
tion can be quite sensitive to the choice of xy. To
probe this sensitivity, a series of material point sim-
ulations were performed with Calibration 1C over

fNote that some authors use the phrase “semi-implicit” to indicate explicit integration of certain ODEs and implicit inte-
gration other ODEs. Herein, “semi-implicit Euler method” indicates that a single implicit iteration is utilized on all ODEs,

rather than iterating until a residual is nearly zero.
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Figure 1: Number of iterations to converge for (almost) uniaxial stress at various strain rates and strain increments.
All cases began in an unhardened state (y = Yy and b; = 0).

a range of strain rates and strain increments. All
cases started from an unhardened state (y = Yp and
b, = 0). (Future studies may consider convergence
from pre-hardened states.) The strain rate compo-
nents were prescribed as

—€,/2 0 0
Eyl=1 0  —¢w/2 0],
0 0  éu

(25)

to produce nearly uniaxial stress at an axial strain
rate of €,, over a time increment At, producing an
axial strain increment of Ae,,. The semi-implicit
scheme was skipped, and the maximum number of
fully-implicit iterations permitted was niy, = 100.
The results corresponding to four different initial
guesses are shown in Fig. 1.

Perhaps the most straightforward initial guess is
the old, previously converged, state g = ccgld. The
equivalent stress corresponding to the old state is
denoted as &Sld. This simple initial guess converged
in less than 30 iterations when ¢,, < 3 x 107!2 1/s
and Ae,, < 2 x 1074, as shown in Fig. la, but it
frequently failed to converge at higher strain rates
and increments.

Perhaps the most commonly used initial guess in
plasticity implementations treats the total strain in-
crement from the host code as a purely elastic strain
increment, xg = .’ESI. This purely elastic strain in-
crement produces an initial guess for & denoted as
the trial, elastic, equivalent stress 681. Purely elastic
initial guesses converged for small Ae,,, as shown in

Fig. 1b, but failed for Ae,, > 2 x 1074,



Schreyer (2002) recognized the poor performance
of :Bgld and :I:(e)l, which led him to propose another
initial guess: a purely viscoplastic strain increment
with fully saturated hardening and zero elastic strain
increment, ¢y = x,". To compute ", one requires
the trial, fully saturated, equivalent stress oy corre-
sponding to a pure viscoplastic strain rate €,, = éov P
The following equation

son(G) (3] o

provides an implicit relationship between 58’ P and
70, but it does not have an analytical solution. One
can, however, ignore interactions between the two
terms in Eq. (26), solve £,° = P; exp (—%) % for

0, solve éOVP = Y3 exp (—%) [sinh (%)}Yo for oy,
and then adopt the smaller of the two 9. With &g
determined, it is relatively straightforward to com-
pute the remaining components in a;" for materials
with a von Mises flow potential (Schreyer, 2002).
This initial guess generally performed better than
the old and elastic states for Ae,, > 3 x 1073 (see
Fig. 1c), but worse for smaller strain increments.

The last initial guess considered herein combined
the three previous guesses into one scheme. The fol-
lowing measure of expected deviatoric loading,

. 6_61 _ &old
X = min [X <U(())—5801d> , 1} (27)

where X > 0 is a tuning parameter, was used to
construct the following initial guess,

2y — 2 — acgl, for x <0
0 o+ y (xf —xd),  for x > 0.
(28)

In words, if deviatoric unloading is expected, then
x uses an elastic strain increment. If deviatoric
loading is expected, then a:bn linearly interpolates
between the old state and the saturated hardening
state, but not beyond the saturated hardening state.
The convergence behavior corresponding to 0 <
X <1 was studied in AX = 0.1 increments, leading
to the selection of X = 0.2. The performance of this
initial guess scheme is shown in Fig. 1d, where al-
most every case converged in ni; < 30. The sliver of
non-convergence at 3.9x 10713 < ¢&,, <4x1072 1/s
and Ae,, > 2 x 1073 is not ideal, but probably not
very important because large strain increments at
such slow strain rates are rare. This initial guess
scheme was used for the simulations discussed in the
following section.

4 DEMONSTRATIONS

Two demonstrations are presented, both of which
compare the behavior of Calibration 1A1 (only drag
stress hardening) against Calibration 1C (combined
drag stress and back stress hardening).

4.1 Multi-stage constant stress simulations

The first demonstration explores the constant stress
behavior after stress drops of varying size at 6 =
300 K. The simulations all began with hydrostatic
loading to a Cauchy stress of o, = ogg = 0, =
20 MPa, which induced a logarithmic axial strain of
€4(ty ), where t; was the instant in time before ¢y =
0 days. This mean stress oy, = tr(o)/3 = 20 MPa
was held fixed over the remainder of each simulation,
while the stress difference ¢ = ¢,, — oy was varied by
setting oy = oy —0 /3 and 0,, = 26 /3+0m. Atty, &
was raised to 12 MPa and held for 50 days. As shown
in Fig. 2a, this stress increase caused a rapid increase
in g4, during the first day, but £,, gradually reduced,
trending towards its steady-state rate. Note that
the Calibration 1A1 strain histories were artificially
shifted downward by 0.068 % strain in Fig. 2 in order
to aid visual comparisons. (Both Calibration 1A1
and 1C were each fit against strain histories from
constant stress tests with ¢ = 12 MPa, but they
still do not produce the exact same strain histories
at a given stress.) The bottom plot in Fig. 2a de-
picts the back stress difference b= byz — by, Where
b(t7) = 0.0 and 10.0 MPa in the Calibration 1A1
and Calibration 1C simulations, respectively.

At t1 = 50 days, ¢ was dropped by differ-
ing amounts in each simulation, leading to differing
strain histories over the next 50 d. The Calibra-
tion 1A1 strain histories exhibit little to no transient
strain, while the Calibration 1C strain histories ex-
hibit small to large amounts of transient strain de-
pending on the magnitude of the stress drop.

The small stress drops to (¢1) > 0 keep the salt
in axisymmetric compression, which leads to small
amounts of forward creep (sign (¢,,) = sign (¢)) with
Calibration 1A1, and reverse creep (sign(é,,) #
sign (¢)) with Calibration 1C. The drop to &(t;) =
9 MPa produces virtually identical Calibration 1A1
and 1C strain histories in Fig. 2b, with very lit-
tle transient strain from Calibration 1C because
598 = 5 — b is small. Drops to 5(¢;) = 6 and 3 MPa
cause £,, > 0 in the Calibration 1A1 simulations,
yet cause £,, < 0 in the Calibration 1C simulations.
In both cases, sign (¢,,) can be explained by recog-
nizing that Eq. (10) reduces to

¢de — 298 gign (5 — b) (29)
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Figure 2: Multi-stage constant stress simulations with
two different salt model calibrations. (Note that the
Calibration 1A1 strain histories were shifted down by
0.068 % strain to more closely match the Calibration 1C
strain histories.)

under axisymmetric loading. For Calibration 1A1,
sign (& — b) = sign (&), so 9% > 0. For Calibra-
tion 1C, 5 — b < 0 when &(t;) = 6 and 3 MPa,
SO é;lzg < 0. The Calibration 1C predictions for
d(t1) > 0 are qualitatively consistent with the ex-
perimental results on Asse salt in Hunsche (1988,
Fig. 3), while the Calibration 1A1 predictions are

not.

The large stress drops to d(t1) < 0 place the ma-
terial under hydrostatic compression or axisymmet-
ric extension, causing both calibrations to predict
€,z < 0. Calibration 1A1 predicts very little tran-
sient strain because the material is over-hardened.
Calibration 1C, on the other hand, predicts substan-
tial amounts of transient strain because the back
stress can re-harden upon a large change in . The
stress drop to d(t;) = —12 MPa exhibits as large
a transient strain magnitude as during 0 < ¢t < t1,
and |€,,(t2)| = |€4(t] )|, where t3 = 100 d, which is
consistent with experimental results on Cayuta salt
in Mellegard et al. (2007).

4.2 Cyclic loading of a gas storage cavern

The second demonstration is a common application
of salt constitutive models: prediction of a gas stor-
age cavern’s volume loss over time. A schematic
of the axisymmetric cavern geometry and bound-
ary conditions is shown in Fig. 3. The left side of
the domain was the axis of symmetry, the top was
traction free, while the bottom and right sides had
roller boundary conditions. The single cigar-shaped
cavern had a radius and length of L, = 35 m and
L, = 600 m, respectively. The cavern center was
L. = 1100 m beneath the surface. The bottom and
right sides of the domain were Lq = 4400 m away
from the cavern center. The domain was pure salt
for simplicity, with a density of p = 2300 kg/m3.
Gravity was taken as 9.79 m/s?, and the tempera-
ture was 300 K throughout the domain.

To initialize the simulations, all material points
were assigned a lithostatic stress state, and a liquid
pressure, equal to the lithostatic pressure, was ap-
plied to the cavern walls. (Salt cannot sustain a de-
viatoric stress over the long term, so it is reasonable
to assume a simple lithostatic stress state at the on-
set.) The cavern excavation and filling with gas was
simulated by linearly ramping the liquid pressure
to zero while simultaneously linearly increasing the
wellhead gas pressure from pyp = 0 to 12.84 MPa.
The excavation and filling was performed over 0.01 s,
amounting to a virtually instantaneous process. The
gas pressure within the cavern was treated as spa-
tially uniform and equal to pyp.



The value of py, was varied over the remainder of
each simulation to capture the effect of storing and
extracting gas from the cavern. Four cycles were
applied while measuring the cavern volume v. The
first cycle held py1, = 12.84 MPa for five years, then
decreased it to pyn = 6.42 MPa virtually instanta-
neously (over 0.01 s), and held py, = 6.42 MPa
for three days. The next three cycles each held
pwh = 12.84 MPa for three days and then held
Pwh = 6.42 MPa for another three days. Pressur-
ization cycles such as these are most representative
of compressed air energy storage facilities, but some
natural gas storage operations utilize similar cycles
(Sobolik, 2022). Note that, in reality, virtually in-
stantaneous gas pressure changes would cause adia-
batic temperature changes, but this effect is ignored
for simplicity.
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Figure 3: Axisymmetric cavern geometry and boundary
conditions.

A few numerical details bear mentioning. All
simulations were performed wusing Sierra/Solid-
Mechanics (2021)’s implicit quasi-static finite ele-
ment capability. The selective deviatoric element,
which fully integrates the deviatoric response with
Njp = 8 integration points and under integrates the
pressure response (similar to a qlp0 element), was
used throughout the domain. Element sizes started
at L,/100 near the cavern and gradually grew with
distance from the cavern, reaching roughly L,/2
along the right and bottom boundaries. The total
number of elements was Ng = 13585. The equilib-
rium equations were solved to a maximum relative
residual norm of Ryax = 1077, where Ryay is the L2
norm of the total residual divided by the L2 norm
of the reaction loads at the roller boundary condi-

tions. The total number of iterations throughout
each simulation was roughly Ni,, = 12 x 103.

The salt constitutive model was evaluated about
Nei Nip Nty = 1.3 x 10° times during each simula-
tion, and only failed to converge two times during
the Calibration 1A1 simulation and six times dur-
ing the Calibration 1C simulation. This suggests
the numerical implementation in Section 3 is quite
robust. Some of the robustness is attributed to
using the interpolated state as the initial guess to
the fully-implicit scheme, because the constitutive
model repeatedly failed to converge in abondoned
preliminary simulations that used the old state, elas-
tic state, and saturated hardening state as the initial
guess. Future studies will evaluate the constitutive
model implementation in simulations involving con-
tact constraints and/or materials other than salt.

(a) pwh = 6.42 MPa

(b) pwnh = 12.84 MPa

Figure 4: Equivalent stress near the cavern at low and
high wellhead pressure.

After instantaneous excavation and any pwh
jumps, the time step increment was allowed to grow
or shrink according to the error estimate from the
semi-implicit scheme described in Section 3, subject
to lower and upper bounds of 0.5x and 1.1x change
per time step. A systematic investigation of the time
step size was not performed, but the time step size
began at 1073 s, grew in every case manually in-
spected, and eventually reached about 10 d during
the first 5 yr period with pyn = 12.84 MPa. The per-
sistent time step growth, combined with the robust-
ness observations mentioned above, means the fully-
implicit scheme was intermittently activated during
global equilibrium iterations for a given time step,
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Figure 5: Cavern volume loss, relative to the end of cycle one, during cycles two through four, for two different salt

model calibrations.

yet the semi-implicit scheme sufficiently reduced the
error at every integration point for the last, con-
verged, global equilibrium iteration.

The equivalent stress fields near the cavern, av-
eraged over each element, are shown in Fig. 4 for the
two wellhead pressures applied. These fields corre-
spond to the end and halfway through cycle 4 in the
Calibration 1C simulation, but they do not vary dra-
matically between Calibration 1A1 and 1C, or from
cycle to cycle. As one might expect, low py1, leads to
high & near the cavern, while high pyy leads to low
0 near the cavern. From low to high pyp, the value
of & drops from 14.9 MPa to 7.3 MPa, from 11.5 to
9.2 MPa, and from 6.0 to 5.5 MPa at locations 3 m,
21 m, and 57 m from the cavern’s bottom surface,
respectively.

The predicted cavern volume loss histories in
Fig. 5 show the clear difference between Calibra-
tion 1A1, without kinematic hardening, and Cali-
bration 1C, with kinematic hardening. To make the
differences more visible, all but the very end of the
first wellhead pressure cycle is omitted from Fig. 5,
t — t1 is the time relative to the end of cycle one,
and (v1 — v)/v; is the volume loss relative to the
volume at end of cycle one v;. When the wellhead
pressure is raised to pyn = 12.84 at t — t; = 0, both

calibrations predict an elastic increase in volume of
0.05 %, but Calibration 1C predicts an additional
0.006 % volume increase due to reverse creep. This
minor difference appears consistent with the differ-
ence in the ¢ fields between Fig. 4a and Fig. 4b near
the cavern, and the reverse creep responses due to
small stress drops in Fig. 2b. When the wellhead
pressure is decreased to pyp = 6.42 at t —t; = 3 d,
the Calibration 1A1 volume loss rate returns nearly
to the same rate observed at the end of cycle one.
The Calibration 1C volume loss rate, by contrast,
is substantially higher than that at the end of cy-
cle one. This difference can be explained by the y
and b histories Fig. 2a: after a ¢ drop (after a pyn
increase), hardening negligibly evolves in Calibra-
tion 1A1, yet the back stress substantially decreases
in Calibration 1C, even after a small & drop. Once &
is increased again (py is decreased again), the Cali-
bration 1A1 salt picks up right where it left off, while
the back stress in Calibration 1C salt must substan-
tially increase (re-harden), leading to a greater vol-
ume loss rate at t7 —t; = 3 d than at ¢t~ — ¢; = 0.
At the end of cycle two (t~ —t; = 6 d), Calibra-
tion 1C predicts 39 % greater volume loss, relative
to the end of cycle one, than Calibration 1A1. Cy-
cles three and four continue the same trend, leading



one to expect dramatic differences if cycling were to
continue for several years.

5 CONCLUSIONS

The transient hardening behavior of damage-free
rock salt remains challenging to capture with consti-
tutive models, and methods to numerical integrate
such models are far from trivial. Accordingly, this
paper reviewed a new salt constitutive model formu-
lation, implemented it in a finite element code, and
demonstrated the behaviors it predicts in two exam-
ples. One important difference between this model
and others in the literature, is the addition of back
stress (kinematic) hardening as well as drag stress
(isotropic) hardening.

The numerical implementation first attempts to
integrate the model’s differential equations using a
Richardson extrapolated semi-implicit scheme. This
scheme produces an error estimate that can be used
to suggest the next time step size to the host momen-
tum balance code. If the semi-implicit scheme fails,
the implementation falls back to a fully-implicit
scheme. Four different initial guesses for the fully-
implicit scheme were investigated: the previous con-
verged state, a fully elastic state, a fully viscoplas-
tic state, and an initial guess that interpolated be-
tween the previous converged state and the fully vis-
coplastic state. Comparing the number of iterations
to converge over a wide range of strain increments
and strain rates revealed that the interpolated initial
guess performed best.

The demonstration examples brought out dif-
ferences between simple drag stress hardening and
combined drag and back stress hardening. Only
combined hardening was able to qualitatively rep-
resent reverse creep and the large transient strains
experimentally observed during multi-stage constant
stress tests with stress drops (Hunsche, 1988; Melle-
gard et al., 2007). Simulations of a gas cavern sub-
jected to high and low pressure cycles showed that
the numerical implementation is robust enough for
structural problems, and demonstrated that com-
bined hardening predicts considerably more volume
loss over time than drag stress hardening alone.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the assistance of his San-
dia colleagues (especially James Bean and Steve Sobolik),
his Joint Project WEIMOS colleagues, and Prof. Howard
Schreyer. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. De-

partment of Energy’s National Nuclear Security Administra-
tion under contract DE-NA0003525. This research is funded
by WIPP programs administered by the Office of Environ-
mental Management (EM) of the U.S. Department of Energy.
This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.
SAND2022-XXXXXC

REFERENCES

Carter, N., Horseman, S., Russell, J., and Handin,
J. 1993. “Rheology of rocksalt”. In: Journal of
structural geology 15.9-10, pp. 1257-1271.

Chaboche, J.-L. 1986. “Time-independent constitu-
tive theories for cyclic plasticity”. In: Interna-
tional journal of plasticity 2.2, pp. 149-188.

Chaboche, J. 2008. “A review of some plasticity and
viscoplasticity constitutive theories”. In: Interna-
tional journal of plasticity 24.10, pp. 1642-1693.

Garofalo, F. 1963. “An empirical relation defining
the stress dependence of minimum creep rate in
metals”. In: Trans. aime 227, pp. 351-356.

Hofstetter, G. 2014. Computational engineering.
Springer.

Hunsche, U. 1988. “Measurement of creep in rock
salt at small strain rates”. In: The mechanical
behavior of salt proceedings of the second con-
ference. Clausthal: Trans. Tech. Publications,
pp. 187-196.

Mellegard, K. D., DeVries, K. L., and Callahan,
G. D. May 2007. “Lode angle effects on the creep
of salt”. In: Proc. 6th conference on the mechan-
ical behavior of salt. Ed. by M. Wallner, K.-H.
Lux, W. Minkley, and H. R. H. Jr. Taylor &
Francis.

Press, W. H., Teukolsky, S. A., Vetterling, W. T.,
and Flannery, B. P. 2007. Numerical recipes.
Third. Cambridge university press Cambridge.

Raj, S. V. and Pharr, G. 1989. “Creep substructure
formation in sodium chloride single crystals in
the power law and exponential creep regimes”.
In: Materials science and engineering: a 122.2,
pp. 233-242.

Reedlunn, B. Nov. 2018. FEnhancements to the
Munson-Dawson model for rock salt. Tech. rep.
SAND2018-12601. Albuquerque, NM, USA: San-
dia National Laboratories.

Reedlunn, B. Oct. 2020. Status of a new thermome-
chanical constitutive model for rock salt. Memo-
randum. SAND2020-11023 CTF.

Reedlunn, B. 2022. “A new rock salt constitutive
model with back stress and drag stress harden-
ing”. In: The mechanical behavior of salt X. (ac-
cepted).



Reedlunn, B., Argiiello, J. G., and Hansen, F. D. Sobolik, S. R. Mar. 2022. Typical gas storage cavern

2022. “A reinvestigation into munson’s model for loading cycles. Personal Communication.

room closure in bedded rock salt”. In: Interna- Spiers, C., Schutjens, P., Brzesowsky, R., Peach,

tional journal of rock mechanics and mining sci- C., Liezenberg, J., and Zwart, H. 1990. “Experi-

ences 151. mental determination of constitutive parameters
Schreyer, H. 2002. “On time integration of viscoplas- governing creep of rocksalt by pressure solution”.

tic constitutive models suitable for creep”. In: In: Geological society, London, special publica-

International journal for numerical methods in tions 54.1, pp. 215-227.

engineering 53.3, pp. 637-652. Yahya, O., Aubertin, M., and Julien, M. 2000. “A
Sierra/SolidMechanics Mar. 2021. unified representation of the plasticity, creep and

Sierra/SolidMechanics — User’s — Guide.  5.0. relaxation behavior of rocksalt”. In: International

SAND2021-2961. Sandia National Laboratories. journal of rock mechanics and mining sciences

Albuquerque, NM, USA; Livermore, CA, USA. 37.5, pp. 787-800.



	Introduction
	Model Formulation
	Discussion
	Calibrations

	Numerical Implementation
	Demonstrations
	Multi-stage constant stress simulations
	Cyclic loading of a gas storage cavern

	Conclusions

