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Electrical Contacts use Bare Metal
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Electronics (e.g. PCB blade connectors):
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Metals are Ductile and Sticky

piston piston
Aluminum/Aluminum 1.2
Copper/Copper 1.0
Nickel/Nickel 0.9
Rubber/Asphalt 0.9
Waxed Ski/Snow (0° 0.05
agcoauto.com C)

* Sliding metal contacts are
everywhere
—  Electrical interconnects
—  Wind turbines
— Hipreplacements
— Car Engines (~12% loss)

* High adhesion and friction
* Lots of plasticity and wear

Chandrasekar, Purdue
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Reduced Friction and Wear of Nanocrystalline Metals

Alloying reduces friction coefficient:

1.5 - 99.999% pure Au
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Z 10l Alloying improves
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S and stabilizing grain size
S 05! 99.9% Au
9 -
i

(add immiscible species like Ni or ZnO)
0.0 L

0 10 20 30 40 50 60 70 80 90 100
cycle number

...by reducing grain size:
99.9% Au 99.5% Au 99% Au

@ Sandia National Laboratories



Bridging the Gap from Atomistic Modeling to Macroscale Applications
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Grain size and Materials Properties

Grain from Lu et al., Science, 2009
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Generalized Friction Map for Metals

Argibay, Chandross, Cheng, Michael; J. Mater. Sci. (2017)
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Evidence for GBS as a Low Friction Mechanism
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Direction Connection between Friction and Grain Size

friction coefficient
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Direction Connection between Friction and Grain Size

Chandross, et al. Scripta Mat .(2017)
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First evidence of (1) grain size dependent friction and (2) inverse H-P linked to low friction. Also, provides
validation of inverse H-P behavior of metals.



Evidence of GBS in MD simulations (Ta)

Grain
boundary
sliding here

() Sandia National Laboratories



Stress is different between GBS and DMP
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Link Between GBS and Friction
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* Simulations clearly show GBS

* Linear dependence of shear strength on
velocity or shear rate

* Also seen by other groups
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A New Model Predicts this behavior
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GBS via amorphization
(Chandross/Argibay)

Data references:

® Cordero, et al., Int. Matl. Rev., 2016
® Tang, et al., Mat. Sci. Eng., 2017
—Lim, etal., J. Mech. Phys. Sol., 2014

low strain rate (Cordero, 2016)
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Conclusions

 GBSis linked to inverse H-P and low friction
* Experiments @ cryogenic temperature
* Experiments with stabilized boundaries
* Pure metals
* Stable NC alloys
e Simulations on alloys w/ stable boundaries

* Tribological experiments maintain inverse H-P regime
* High strain rates
* Repeated contact

* Link to superplasticity
* Linear strain rate dependence
* Implies new potential for friction models
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Link Between GBS and Superplasticity

Edington, J.W., K.N. Melton, and C.P. Cutler.
“Superplasticity.” Progress in Materials Science, 1976

General equation:

When m=1, pure GBS ¢ = K(Jf— 0p)

Implies: € = 5‘;—% withn as a GB

viscosity
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Link Between Superplasticity and Friction?

Ff — TA € Classic Bowden & Tabor friction formula

Expand 7 =7, + aP +fe"
Fe=1y4 + oF) + pAe"

1, =1y + aoy + fe” € fundamental shear strength of an interface

At Fy =0
1= 1y + fe"

Or: e"=K(t,—1,) € Superplasticity! (when m>0.3)
* Extension of Bowden & Tabor’s fundamental friction model

* Recovers superplasticity equations at /=0
* No refinement: all grain boundary sliding!
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