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Introduction

 Aim: Devise a way to qualify training datasets (TD) used for machine-learned (ML) turbulence 
closures
 Also, a method to qualify the ML closure trained on the TD

 Datasets & ML models
 Training data: DNS datasets – 5 channel flows, channel w/ wavy wall, flow around square cylinder

 Test data: Impinging jet

 Model: Tensor-basis neural net (TBNN) RANS closure 

 Why does this matter? ML closures very inaccurate when extrapolating 
 Need to qualify it – identify when it can & cannot be used

 Easier to qualify the TD data instead, and then explain the neural network

Takeaway: Need a way to assess quality of a ML closure and bound its use
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Background

 ML turbulence closures for RANS
 Predict Reynolds  stress or anisotropy, given features / local flow state

 Random forests & various neural net architectures

 Characterizing training datasets (DOI:10.2514/1.J060919)
 Physically meaningful partitions: Greedy algorithm to assemble a feature-
space for Gaussian Mixture Model clustering of TD

 Accommodates correlated features from an over-complete dictionary

 Summarization of TD: Prototype placement, summarizing the TD

 Supervised learning, with cluster IDs serving as labels

 Illustrate distribution of TD in feature-space

J. Ling, JFM 2016

Takeaway: Unsupervised partitioning of TD into homogeneous clusters of 
turbulent processes

M. Barone, AIAAJ 2022
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Outstanding questions

 Qualifying a TD: There exists a feature-space where clustering delivers physically-meaningful 
clusters
 Is this feature-space unique?

 Is it dependent on Gaussian Mixture Model clusters?

 Can the clusters be used to create a one-class classifier? 

 Can the classifier be used to detect processes (in a ”test” dataset) not in the TD?

 Qualifying a ML closure: Does the closure adhere to turbulence theory? 
 Imbalance in TD will cause ML closure to be biased. Can we detect it from theory?

 Insufficient TD will lead to a poorly trained NN. Can theory help with detection?
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Finding # 1 – Feature-space not unique

 Alternative feature space: 
 Correlation analysis of features’ dictionary yields new feature-space

 Note: Still need a turbulence-informed dictionary of  features

 Classifiers in alternative feature-space are equally predictive of class labels

 Mapping from class labels to features is rather simple

 LDA and Random Forest classifiers have similar classification performance

 Alternative clustering methods: In alternative feature-space
 Spectral clustering in alternative feature-space yields new clusters

 But they overlap with original clusters 78% - 98% - so not really different

Takeaways: 
• Feature-space for clustering is not unique
• Clusters are independent of clustering method and feature-space
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Finding # 2 – TD qualified with 1-class classifier

 Rationale: Clustering identifies partitions with homogeneous 
turbulent processes in TD
 Implication: Given a “test” dataset, intersect with TD and find 
processes absent from it

 Qualifies the TD!

 Procedure: Make a 1-class classifier to recognize known 
turbulent processes /clusters
 Soft Independent Modeling of Class Analogs (SIMCA) & test

 Test dataset: Impinging jet

 Outcome: Reliably finds processes absent in TD
 Manually verified

centerline

r/D = 1

r/D = 6

Test locations

centerline
Takeaway: Physically meaningful clusters + 1-class classifier = 

Qualifiable Training Dataset 
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Finding # 3 – LIME explanations of ML closures

 A TBNN closure should resemble a linear eddy viscosity model
 At least when trained on channel flow training data

 Use LIME to find the functional form of TBNN closure
 At prototypes chosen from a turbulent boundary layer (TBL)

 Use TBNN evaluations near a prototype to fit a Generalized Linear 
Mixed-effects Model

 Reveals the functional dependence on TBNN inputs

 Findings with 2 separate TDs:
 TBL regions well represented in the TD resemble  a LEVM

 For insufficient TD, TBNN functional form is non-physical

Takeaway: LIME can expose the functional form of a black-box closure for 
comparison with closed-form expressions 
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Summary

 A training dataset can be clustered into partitions with homogeneous turbulent process

 The feature-space can be assembled from a theory-informed dictionary

 The feature-space is not unique

 Cluster IDs can become class labels

 A labeled TD can be used to identify absent processes and thus qualify it 

 and any model trained with it

 Requires one to make a 1-class classifier (SIMCA, 1-class SVMs etc.)

 A black-box neural net closure can reduced to its functional form via LIME

 Best done at prototypes taken from its TD

 Allows comparison with closed-form expressions & identification of model shortcomings

 More info:
 M. Barone et al, "Feature Selection, Clustering, and Prototype Placement for Turbulence Data Sets", AIAA Journal, 2022. DOI:10.2514/1.J060919

 T. Banerjee et al, “Qualifying Training Datasets for Data-Driven Turbulence Closures”, AIAA Aviation 2022.

https://doi.org/10.2514/1.J060919
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