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Introduction

= Aim: Devise a way to qualify training datasets (TD) used for machine-learned (ML) turbulence
closures

= Also, a method to qualify the ML closure trained on the TD
= Datasets & ML models
= Training data: DNS datasets — 5 channel flows, channel w/ wavy wall, flow around square cylinder
= Test data: Impinging jet
= Model: Tensor-basis neural net (TBNN) RANS closure
= Why does this matter? ML closures very inaccurate when extrapolating

= Need to qualify it — identify when it can & cannot be used

= Easier to qualify the TD data instead, and then explain the neural network

Takeaway: Need a way to assess quality of a ML closure and bound its use
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= Random forests & various neural net architectures it Loyer aden Layers W'g
= Characterizing training datasets (DOI:10.2514/1.J060919)

= Physically meaningful partitions: Greedy algorithm to assemble a feature-
space for Gaussian Mixture Model clustering of TD
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= Accommodates correlated features from an over-complete dictionary

= Summarization of TD: Prototype placement, summarizing the TD °

= Supervised learning, with cluster IDs serving as labels N

= |llustrate distribution of TD in feature-space =

Takeaway: Unsupervised partitioning of TD into homogeneous clusters of
turbulent processes




Outstanding questions

» Qualifying a TD: There exists a feature-space where clustering delivers physically-meaningful
clusters

= |s this feature-space unique?
= |s it dependent on Gaussian Mixture Model clusters?
= Can the clusters be used to create a one-class classifier?
= Can the classifier be used to detect processes (in a "test” dataset) not in the TD?
= Qualifying a ML closure: Does the closure adhere to turbulence theory?
= Imbalance in TD will cause ML closure to be biased. Can we detect it from theory?

» |nsufficient TD will lead to a poorly trained NN. Can theory help with detection?




Finding # 1 — Feature-space not unique

= Alternative feature space:

= Correlation analysis of features’ dictionary yields new feature-space

= Note: Still need a turbulence-informed dictionary of features
» Classifiers in alternative feature-space are equally predictive of class labels
= Mapping from class labels to features is rather simple
= LDA and Random Forest classifiers have similar classification performance
= Alternative clustering methods: In alternative feature-space

» Spectral clustering in alternative feature-space yields new clusters

= But they overlap with original clusters 78% - 98% - so not really different
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Takeaways:
* Feature-space for clustering is not unique
* Clusters are independent of clustering method and feature-space




Finding # 2 — TD qualified with 1-class classifier

Time: 0.346813 w2 TR

= Rationale: Clustering identifies partitions with homogeneous
turbulent processes in TD

= I[mplication: Given a “test” dataset, intersect with TD and find
processes absent from it

= Qualifies the TD!

* Procedure: Make a 1-class classifier to recognize known
turbulent processes /clusters

= Soft Independent Modeling of Class Analogs (SIMCA) & test

= Test dataset: Impinging jet
= Outcome: Reliably finds processes absent in TD Sim'l
= Manually verified ;iilo-z l
Takeaway: Physically meaningful clusters + 1-class classifier = o3 _
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Finding # 3 — LIME explanations of ML closures

A TBNN closure should resemble a linear eddy viscosity model
= At least when trained on channel flow training data

Use LIME to find the functional form of TBNN closure

= At prototypes chosen from a turbulent boundary layer (TBL)

Use TBNN evaluations near a prototype to fit a Generalized Linear
Mixed-effects Model

= Reveals the functional dependence on TBNN inputs
Findings with 2 separate TDs:
= TBL regions well represented in the TD resemble a LEVM

= For insufficient TD, TBNN functional form is non-physical

Takeaway: LIME can expose the functional form of a black-box closure for

comparison with closed-form expressions
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Summary

A training dataset can be clustered into partitions with homogeneous turbulent process
» The feature-space can be assembled from a theory-informed dictionary

» The feature-space is not unique

= Cluster IDs can become class labels

A labeled TD can be used to identify absent processes and thus qualify it

= and any model trained with it

= Requires one to make a 1-class classifier (SIMCA, 1-class SVMs etc.)

A black-box neural net closure can reduced to its functional form via LIME
= Best done at prototypes taken from its TD

= Allows comparison with closed-form expressions & identification of model shortcomings

More info:

= M. Barone et al, "Feature Selection, Clustering, and Prototype Placement for Turbulence Data Sets", AIAA Journal, 2022. DOI:10.2514/1.J060919

= T. Banerjee et al, “Qualifying Training Datasets for Data-Driven Turbulence Closures”, AIAA Aviation 2022.
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