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HER STO:Rh w/Pt cocatalyst nanoparticles in a Z-Scheme system

1)  Light absorption

2)  Transport of carriers 
to particle surface

3)  Hydrogen evolution 
catalyzed by Pt & redox 
shuttle oxidation



HER STO:Rh w/Pt cocatalyst nanoparticles in a Z-Scheme system

Transport of carriers to 
particle surface
• Drift or diffusion?
• Measure photocarrier 

lifetime



Electrically probe individual STO:Rh nanoparticles to find limiting 
charge transport mechanism



• Bulk –limited transport 
mechanism

• Nanoparticle has low free 
carrier concentration

Trap-mediated space-charge limited current (SCLC)
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Trap-mediated space-charge limited current (SCLC)



Ideal SCLC

Measured

Impact of Pt co-catalysts on transport



Ideal SCLC

Measured

Impact of Pt co-catalysts on transport

• Conductance (α) of 
particles is strongly 
dependent on particle size

• Pt co-catalysts have no 
impact on transport



STO:Rh nanoparticles behave as photoconductors

STO:Rh STO



STO:Rh nanoparticles behave as photoconductors

Diffusion Length = 6 nm

In 170-nm radius 
particle only 10% of 
volume is active



Lipovsek et al. AIP Advances 2019

Free carriers within a 
semiconductor can 
move to screen changes 
in work function

Built-in E fields increase e-h separation efficiency



Imaging E fields with electron-beam induced current (EBIC)

No significant built-in E 
field, no free carriers to 
screen changes in work 
function



Free electrons donated by oxygen vacancies are 
trapped by rhodium acceptor states
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• Solar irradiation will generate one e-h 
pair every 2 ns
• 1 ps carrier lifetime in STO:Rh
• 90 ps lifetime in STO

• Negligible chance of multiple e-h pairs 
interacting
• Drift-diffusion model will not apply 
unless carrier lifetime is well in 
excess of 2 ns

• Difference in electron (10 cm2/Vs) and 
hole (.005 cm2/Vs) mobility may explain 
separation in STO



Few free carriers and trap-dominated charge transport
• 1 ps recombination lifetime, 6 nm carrier diffusion length 
limit active volume

• Free electrons donated by oxygen vacancies are trapped by 
rhodium acceptor states

No measured internal E fields to aid charge separation
• High free carrier concentration (>> 1017 cm-3 ) is required to 
screen changes in work function

Charge transport in STO:Rh PC Nanoparticles

Need a dopant (or co-dopant which increases light 
absorption without sacrificing carrier lifetime
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Electrostatically, a Pt co-catalyst 
of 5 nm diameter can have a 
depletion region of, at most, 10-
15 nm

Nanoscale Schottky contacts have different behavior than planar contacts


