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Can a capable oceanographic research vessel have zero emissions?

Abstract

Scripps Institution of Oceanography is exploring options to replace its aging
research vessel Robert Gordon Sproul, which conducts scientific, educational, and
technology development missions offshore California. As part of this effort, we
conducted a comprehensive study to determine the technical, regulatory, and
economic feasibility of a coastal research vessel powered solely by zero-emission
hydrogen fuel cells, and assess the environmental benefits for such a vessel. Our
results indicate that it feasible from technical, regulatory, and economic perspectives
to design, build and operate a coastal research vessel powered solely by hydrogen
fuel cells, using existing and commercially-available technology and services. The
conceptual vessel (Zero/V) would offer dramatic environmental benefits, have low
airborne and underwater noise signatures, and could be conveniently refueled by
LH2 truck trailers at likely ports of call.

Approach

1) Evaluate technical feasibility of LH2 fuel cells

2) Evaluate refueling feasibility

3) Assess criteria pollutant and CO2 emissions

4) Resolve the economics to build & operate

5) Understand the regulatory framework

6) Evaluate the ability of a conceptual vessel to fulfill desired scientific missions

Design Targets: Coastal Research Vessel

Characteristic Desired Spec Characteristic Desired Spec
Scientists (overnight) 16 - 20 (overnight) Multibeam 3600 m max depth
Scientists (day trip) 45 - 50 (day trip) ADCP 75 kHz & 150 kHz
Speed, transit 10 kts (SS4), 7 kts (SS5) Fisheries sonar multi-fregency
Speed, maximum 12 kts Echosounder 3.5 & 12 kHz
Dynamic positioning 2 kts beam curent Acoustic navigation USBL or SSBL
25 kts wind & tracking
Sea keeping 100% SS4; >50% SS5 Motion reference unit Survey quality
Endurance 21 days GPS Survey quality
Range 2,500 nm Satellite broadband HiSeasNet
Main lab 800 sq ft Data Network yes
Wet lab 400 sq ft Spare Transducer wells yes
Work deck 1,200 sq ft Flow-thu seawater yes
Computer lab 120 sq ft Walk-in science refer 100 sq ft, -20 deg C
Removable vans 2 20-foot ISO XBT yes
A-Frame SWL 12,000 Ibs Met mast & sensors yes
Main crane SWL 8,000 Ibs @ 12 Gigabit LAN yes
Knuckle crane SWL 4,000 Ibs Overboard handling Cores, dredges, nets
Side CTD frame SWL 5000 lbs Support for autonomy AUVs, UAVs, ROVs
Trawl winch 10,000 m 3/8-inch 3x19 Hydro winch 10,000 m .322 EM
10,000 m .681 FO 10,000 m 1/4-inch 3x19

Motivation for a new research vessel

California-based oceanographic vessels used for education and academic
research have decreased from 3 to 1, with the remaining vessel approaching
its end-of-service. A coastal research vessel 1s vital to education, research,
training, and technology R&D activities in California.

A new vessel is needed.
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Needed

Primary Vessel Uses

- University class cruises
- Technology R&D

Missions and Requirements

Multidisciplinary, general-purpose teaching & research vessel

Frequent short (one day) coastal projects, including seagoing instruction for classes
Occasional long (up to 14-day) offshore deployments, working round-the-clock
Support for all disciplines: biology, chemistry, geology, geophysics, physics
Moorings, towed instruments, acoustic surveys, CTD profiling

Must have excellent slow-speed handling and dynamic positioning

Needs ample laboratory and deck space, and heavy-lift overboarding capabilities
Must support all-season operations, including long-range CalCOFI surveys

- Independent student-led research
- Sponsored oceanographic research
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Desire

A) Eliminate criteria pollutant emissions that create smog and impact human health
B) Eliminate the use of fossil fuels and the associated risk of o1l spill pollution

C) Eliminate the emission of CO2, which is a greenhouse gas

D) Eliminate our dependence on petroleum fuels in favor of renewable energy
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Clean marine power from hydrogen fuel cells

Emissions of criteria pollutants from maritime sources significantly impact air
quality and human health on and offshore in California (Klebanoff et al, 2018).
Carbon dioxide (CO2) is a greenhouse gas (GHG), and 1s produced in large quan-
tities by ships powered by fossil fuels. Emissions reductions of 80% or more are
required to produce results that are robust against growth in the intensity at which
technology uses energy (Keller et al, 2012). While fossil fuels remain dominant,
even the most significant emissions reductions modelled do not result in a down-
ward trend (/MO, 2014). Hydrogen enables a zero-emission energy pathway.

Proton Exchange Membrane (PEM) Fuel Cells

Efficiently convert hydrogen to electricity without
combustion

Faster power response than internal combustion

Zero CO2 emissions, zero criteria pollutants

Quiet (no moving parts), reaction product is pure
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LH2 spill of 4,000 gal self-resolves in 7 seconds

LH2 can be supplied now 1n the quantities required

LH?2 has been safely produced, transported, stored
and used for years

Electrolyte

Refueling can use existing infrastrucure

LH2 fueling from trucks is doable at ports of call

Typical two-truck refueling operation can be done
in five hours, with trucks pumping in parallel !

Fueling would be similiar to LNG bunkering that is [
already common in USA and worldwide m———
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Emissions: Well-to-waves analysis

By using PEM fuel cells, Zero-V will emit no CO2 or criteria pollutants at the point
of use. However, we need to consider overall impact of the technology.
Well-to-waves (WTW) analysis accounts for all emissions associated with LH2
production and transportation.

Criteria pollutants (CPs)

CPs harm human health, and are produced by the combustion of fossil fuels
Include nitrogen oxides (NOx), hydrocarbons (HC), and particulate matter (PM)
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PEM fuel cells involve no combustion, so they cannot produce CPs

All CPs associated with Zero/V are from the production and transportation of LH2

Results of WTW analysis:

1) Fossil diesel and biodiesel produce similar levels of CP

2) LH2 from fossil natural gas reduces NOx 81.3% below an equivalent vessel
running on fossil diesel fuel under Tier 4 emission constraints

3) Using 100% renewable electricity, the Zero-V WTW emissions would be
reduced 99.6% 1n NOx, 99.7% in HC and 99.4% 1n PM vs Tier 4 fossil diesel

If LH2 is delivered by a truck that uses 100% renewable hydrogen instead of

diesel fuel, the criteria pollutant emissions could be essentially zero.

Carbon dioxide emissions

CO2 (eq) emissions are the sum of CO2, CH4 and N20 weighted by radiative
trapping - these are greenhouse gasses (GHG).

LH2 can be produced by steam reformation of fossil fuel natural gas (NG), or by
electrolysis using renewable low-carbon electricity.

For Zero-V to reduce maritime CO2(eq), need to use LH2 derived from
renewable sources, not from fossil NG

Renewable LH2 1s commercially available today in quantities needed for Zero-V
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Other benefits of construction and operation of Zero-V

Advances maritime regulations for LH2 vessel technology

Promotes class society capability for examining safe operations of LH2 vessels
Develops fuel-cell technology for maritime applications

Stimulates LH2 production and delivery systems, especially renewable LH2
Promotes domestic production of transportation fuels independent of foreign oil

multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
Inc., for the U.S. Department of Energy's National Nuclear i

Security Administration under contract DE-NA0003525.
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' YES:Zero/V is FEASIBLE TODAY
Based on technical - requlatory - economic considerations
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Zero/V is a bold, transformative game-changer

Zero emissions: no NOx, SOx, particulates or CO2 Clean / no GHGs
Uses clean renewable hydrogen: No fossil fuels

Carries no diesel: No oil spills

Fuel cell power plant: few moving parts, no internal combustion Quiet
Fuel cells produce deionized water for laboratory or potable use Efficient
Outstanding scientific instrumentation, range, and habitability Capable
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