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Single photon detection at microwave frequencies:
* Entanglement of superconducting qubits

* Secure quantum communications

* Quantum sensing

* Radioastronomy, dark-matter searches
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astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both
the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are




Dirac semimetal is promising for microwave photon detection

-- Surface states =2 two dimensional electrons
-- Dirac energy dispersion relationship

-- High electron mobility f
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Photon number resolving detectors play a central role in quantum optics. A key challenge in resolving the
number of absorbed photons in the microwave frequency range is finding a suitable material that provides not
only an appropriate band structure for absorbing low-energy photons but also a means of detecting a discrete
photoelectron excitation. To this end, we propose to measure the temperature gain after absorbing a photon using
superconducting cadmium arsenide (CdzAs») with a topological semimetallic surface state as the detector. The



Complete quantum model of photon-number-resolving (PNR) RF single-photon detector

= Working principle of our proposed PNR-RF-SP detector:
o Surface mode absorbs incoming RF photons.
o Excited surface mode transfers energy to bulk phonons.

o Bulk phonons increase the superconductor’s temperature, which changes the bulk
resistance.

o Increased resistance resolves the number of photons absorbed.
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Number resolving capability.
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SQUID Device to study microwave response
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Microwave response setup
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* Large microwave response in
topological SQUID

* Promising for single photon
detection at microwave frequencies



Thank you for your attention!



Weak antilocalization in Cd3As2
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