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Research Interests: Energy Flows in Plasma
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Research paths/talk outline

Radlatlvely cooled reconnection on Z
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Magnetic Reconnection
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Magnetic Reconnection
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Plasmoids Lead to Fast Reconnection and Anomalous Heating

Current| ' | Multiple O Strongly
sheet (| | current<(() sheared
B B 1 sheets flows
O
/ ]\\ [\ Overview of recent theory:
v Loureiro, N. F., & Uzdensky, D.
A.(2015).

PPCF, 58, 014021
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Pulsed-power-driven Magnetic Reconnection

Current

1I=1.4 MA, 240 ns rise time
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Magnetic Reconnection from Double Exploding Wire Arrays

Reconnection X Wi Central
Layer = Conductor

Hare et al PRL 2016, PoP 2017, 2018 jdhare@mit.edu, ZNetUS April 2022



Overview of Diagnostic Suite on MAGPIE at Imperial College
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Anomalous Heating in the Reconnection Layer

VinLh(Emag + Ekin. + Eth,i + Eth,e) ~ Vouté.h(Ekm + Eth,i + Eth,e)
ﬁ ~50% ~25% ~25% ~40% ~60%
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Classical heating
- is too slow:

- ~ 50 ns

~ 800 ns
~ 350 ns

Texp K Tyiscr Tres

Power in Power out

jdhare@mit.edu, ZNetUS April 2022



Magnetic Structure of Plasmoids
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Magnetic Structure of Plasmoids

20 T . . , T
145 ns — Loop 1| 5 : | 5
= Loop 2| ...l

Open questions:
* How does reconnection layer dynamics scale with current?
* What is the quasi-steady behavior of reconnection?
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Reconnection in Extreme Astrophysical Environments
Artst’s impression of a black hole M87 (EHT) Crab Pulsar (Hubble/Chandra)

1. Coolingis a significant loss mechanism:
* Modifies partition of magnetic energy between electrons, ions, kinetic
* Leads to cooling instabilities, radiative collapse, termination of reconnection

2. X-rays: key observational signature in remote environments:
 Where and when are X-rays produced — localized bursts?
 How does this couple back to the reconnection process?

jdhare@mit.edu, ZNetUS April 2022



MARZ: Reconnection on Z

Z is the largest pulsed-power machine in the world

« 20-30 MA peak current compared to 1.4 MA on MAGPIE:
- Density increase by I? ~ 400

- Magnetic energy increase by I? ~ 400
« Cooling rate increase by I* ~ 160,000

Unique capability: strongly radiatively cooled reconnection
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Interesting physics happens on long time scales
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Kink Instability Leads to Turbulent Reconnection

Turbulent reconnection over a large volume,
as observed in astrophysics

Z >,

Kink unstable
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x‘7 Lapenta, G., and L. Bettarini. EPL 93, 6 (2011)
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Hints of a kink instability on MAGPIE

Open question:
What is the long-term behaviour of
this kink instability?
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Trench capacitor
4uF; 10nH: 15mQ

Grounded box enclosing :
2 switches

1 magnetic core

1 vacuum insulator

Vacuum line
Dout.200mm. gap 20mm



PUFFIN 2x1 will drive around 700 kA with a 1.6 pus rise time  ige
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PUFFIN 2x1 will drive ~700 kA with a ~1.5 us rise time e
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Vacuum
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Timeline:

 LTD stages arrive May 2022

* Lab renovation finished December 2022

* Design and construction of power feed
expected early 2023

* First experiments in 2023

Diagnostics:

* Laser imaging shadowgraphy, schlieren,
interferometry and imaging refractometry

« XUV and optical framing cameras

 Thomson scattering (spatially resolved,
lon and electron features)
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Summary

Magnetic reconnection

Unifying theme:
energy flows in plasmas
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