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Modern Electron: Thermionic convertors

for residential heating

e Integrate electricity-producing thermionics into natural gas
furnaces and boilers
e Silent converters with no moving parts
e Compact and high power density
e All “waste” heat is still used
o 100% marginal efficiency electricity production
e Enables blackout-proof furnaces
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Plasma-based Thermionic Converters
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Simulations of Particle Dynamics in

Thermionic Converters

Particle-in-cell method for simulations
of dense charged particle systems
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Triode Converter

« Take advantage of argon’s low
e-neutral cross-section

o Inject high-energy electrons from a
third “aux” electrode that ionize Ar

. Simulations establish | . , possible
for a given plasma density, and
plasma density possible for a given|1_
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Triode Converter - “Plasmatron”
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Fig. 2 Demountable Plasmatron Converter With Plane Parallel
Electrodes
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Fig. 8 Theoretical and Experimental I-V Characteristres for an Argon Plasmatron
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See also Knechtli, R. C., and Marvin Fox. “Theory and Performance of Auxiliary Discharge Thermionic Energy
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WarpX

e Developed at Lawrence Berkeley National Lab
o Part of the Exascale Computing Project
e Usesthe AMReX adaptive mesh
refinement library
o Allows platform-portable code
o Shares functionality with other
software packages
e Modern Electron maintains a fork WarpX
with thermionic-specific
functionality
o We also contribute to the documentation Coe reference source repository
primary WarpX code base
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WarpX is an advanced 2D/Z3D/RZ electromagnetic Particle-In-Cell code.




Example Plasmatron Simulation

1664x1664 grid
4*1013 s timestep
~160M particles
4.5M timesteps

o 1.8us
e 950 M particle* ¢
steps/second

o 4 A100 GPUs

Injected Ion Particle Density (1/cm?) Cathode Electron Particle Density (1/cm3)
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https://docs.google.com/file/d/1YZ3wiIwwuOz7erIQ1FQYMsIAUn5v1FWs/preview
https://docs.google.com/file/d/1z9FhD_GqPdnzXXQDwD3UpzgJPU_72yHu/preview
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Simulations of ignited Cs plasmas

e (s plasmas are sustained by
“multi-step ionization”, where
electron impacts first excite, then
ionize, Cs atoms

e We work with collaborators at Sandia
National Labs to track electrons,

neutral Cs atoms, 52 excited Cs T T e

Inelastic

states, and Cs ions and the reactions

between them e ———
e Obtain much higher fidelitythanany e +cs e +cs*
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Simulations with Aleph at

Sandia National Laboratories

e 1D,2D,or3D
e Particle-in-cell direct simulation Monte Carlo
model (PIC-DSMC)

o Treating electrons, ions, and neutrals as particles
means there are no assumptions about the
distribution functions.

o Thisis a more expensive, but higher-fidelity
method than is commonly used.

e Unstructured finite element mesh.

e Electrostatic.

e Used to study development of arcs in vacuums,
streamer propagation in air, glow discharges, Streamer
etc. Propagation

1.1ns 1.2ns 1.3ns

M. M. Hopkins, J. J. Boerner, C. H. Moore, P. S. Crozi

AN International Conf. on Numerical Simulation of Plasm:
é M Be]ng e (2013
ierro, C. H. Moore, B. T. Yee, and

M. M. Ho| opkins, Plasma Sources Sci. 11
Technol. 27, 105008 (2018).

e Particle merging algorithms keep the counts of
computational particles in check with minimal
disruptions to distribution functions.




Results - Electron Energies

e Electron energy distribution functions (EEDFs)
reflect electron evolution in the presence of
excitation and ionization events

e Asplotted, Maxwellian distributions are linear

e The strong nonlinearity observed is a result of
multistep ionization processes

e All previous models have assumed Maxwellian
energy distributions, a clear shortcoming of their
models

Parameters: 1.82V, p. =113
mTorr, 10 A/cm? emission
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Results - Level Populations

e The network of electron-collision and radiative
reactions among Cs excited states creates

IE 1012_
complex density variations per state > w0
e Electronimpactionization occurs from a variety 8"
of levels, with the majority of ionization from
levels above the first excited state " P 1 o o
e Theseionization rates impact whether a given B
voltage and pressure will remain ignited i0ns
zoo/ |

o We find no evidence of a “double sheath”
where J <J__ systems remain ignited

o Inthese cases spatial inhomogeneity is
likely dominant
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Conclusions

Particle-in-cell simulations are a powerful, high-fidelity tool for
simulations of plasma (and vacuum) thermionic converters
Modern supercomputers and GPUs have sufficient power to
simulate experimental systems

e Modern Electron has demonstrated Thermo Electron’s

plasmatron device operation in simulation

e Sandia National Laboratories and Modern Electron have

demonstrated an ignited Cs-plasma converter in simulation
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