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Fast and accurate fault location is critical for distribution system

protection and recovery
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Development of a robust database of fault signal traces for a
distribution system with high solar PV penetration.

Development of a machine learning (ML) and Deep Learning (DL)-
based fast fault detection, localization and classification method.

Problem Description
Five measurement devices are deployed in the system to record the

measurements needed to train the ML and DL models.

Three types of faults are considered: Single-Line-to-Ground (SLG), Line-
to-Line (LL), and Three-Phase (3P). The sampling frequency used for

measurement devicesis 10 MHz.

Next, Isolation Forests (IF) detects the anomalies in the recorded
signals. The signalis cropped +0.5 ms the fault is detected to occur.
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Figure: Overall workflow for the fault detection and location/classification.

The 1 ms gives enough time to collect necessary information regarding
the fault dynamics to support accurate fault diagnosis.

CWT metrices are calculated from this 1 ms signal

This paper describes obijective technical results and analysis. Any subjective views or opinions that might be expressed in

Fault Simulation

* Three types of faults are simulated in the IEEE 34-bus
distribution feeder.

Parameter Value Parameter Value
Types of faults SLG, LL, 3P Irradiation (W /m?) | 600, 1000
Resistance () | 0.01,0.1,1.5,2,5,10 | Temperature (°C) 28, 50
Incidence angle 1 ms,2ms

* The faults simulated in PSCAD for different

combinations of parameters involves two stages:
Transient to steady-state and fault transient.

* Inthe first stage, the simulation is conducted for 2
seconds without the fault.

 Asnapshotis taken and saved after 2 s of simulation. In
the second stage, 2 ms of fault cases are simulated.

 Thesnapshotis considered as the starting point, and
the fault occurs as 1 ms and 2 ms.

* Thefirst half of the measurement data records the
regular operation, and the last half records the incipient
fault current transients.

Statistical, ML and DL Techniques

Continuous Wavelet Transform
* The convolution of the product between a signal f(t)
and the daughter wavelet is known as the Continuous
Wavelet Transform (CWT) of the signal.

CWT,(a,b) = ! [° x(t)tp(t_b)dt
x ) _ﬁ — 0 a

Isolation Forest (IF) for Fault Detection

* |Fworksintwo stages. In the first stage, the IF model is
trained, and it constructs the forest of random itrees.

* Inthesecond stage (scoring phase), the IF assigns an

anomaly score to all the observations in the dataset.
_E(h(x)
 Theanomaly scoreis computed as: s(x,n) =2 <™

 Where,

t 5
E(h(x)) _ =1 thl (x)

* Here, x, h(x), and E(h(x)) represent the observation, path
lengths, and average path length of x over t itrees,
respectively. C(n) stands for the average path length of
the unsuccessful search in the BST.

* |F determines whether an observation x is an anomaly
or not based on the following condition:
_ | Anomaly, ifs(x,n) ~ 1
* = {Not anomaly, ifs(x,n) < 0.5

CNN for Fault Diagnosis

 The CWT matrices are treated as images. The CWT
matrices of the 1 ms recorded measurements (0.5 ms
before and after the ground mode arrival time) are
saved for the training process of CNN (VGG19).

e TheVGG19 modelistrained with the measurements
from each measurement devices for fault
location/classification.
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Numerical Results and Discussion

Case Description

 The lEEE 34-bus case is adopted for fault simulations
in PSCAD using the python Automation Library.
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Figure: IEEE 34-bus test case in consideration.

 Atotal of 13,440 fault cases (measurements recorded
by the 5 measurement devices) were simulated.

* Foreach case, the CWT matrices were obtained.

Fault Detection
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Fault Location

S 1 2 3 4
Precision 76% 89% 90% 89% 91%
Recall 75% 88% 89% 89% 91%
F-score 75% 88% 89% 89% 91%
Accuracy 75% 88% 89% 89% 91%

Fault location metrics for all the measurement devices using the VGG-19 model

Fault Classification

S 1 2 3 4
Precision 76% 89% 90% 89% 91%
Recall 75% 88% 89% 89% 91%
F-score 5% 88% 89% 89% 91%
Accuracy 5% 88% 89% 89% 91%
Fault type classification
Conclusions
S 1 2 3 4
Proposed method 96% 99% 99% 99% 99%
Baseline [1] 93.97% 94.83% 93.10% 93.10% 93.11%

Results comparison for type classification

 Inboth fault location and classification, we improved the accuracy
considering many fault scenarios (compared to [1]).
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