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How do we build digital twins?

Challenges:
oIdealized models fail to capture impact of defects.

oOverwhelming amounts of data cannot be manually analyzed.

oUncertainty lurks everywhere.

oLimited or incomplete data availability constrains AI approaches. 

Practical approaches:
oNondestructive multimodal data collection can characterize systems.

oDeep learning models can ingest all the data to predict a range of system properties.

oDomain knowledge can be incorporated to improve models and interpret predictions.



Emerging capabilities enable digital twins

Advances in computer vision
◦ Feature-based Anomaly Detection System (FADS)
◦ Volumetric segmentation

 Uncertainty quantification for image-based 
simulation
◦ Efficient Quantification of Uncertainty in Image-
based Physics Simulations (EQUIPS) workflow

 Beyond Fingerprinting
◦ Physics-Informed Multimodal Autoencoders (PIMA)



Automatic anomaly detection in 
high reliability as-built parts 
from images

Kevin Potter, Anthony Garland
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Feature Based Anomaly Detection System (FADS)
Anthony Garland
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Example nominal data (hazelnuts)



CNN activations

Generic Pretrained 
Convolutional Model

Input Image

Example CNN activations
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Aggregate activations

Collapse each filter’s activations to a single value and stack



Learn the nominal datasets activation stats for each filter
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Generic Pretrained 
Convolutional Model

Nominal images 
(“training” set)



2-D FADS example – inference normalization
Feature activations

Resnet 152

Input image

Generic Pretrained 
Convolutional Model

Normalize against 
“training” set

R-vector (standard deviations from 
nominal mean)
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2-D FADS example – converting to a threshold

Anomaly Scores
1.75
Or
1.1
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R-vector (standard deviations from 
nominal mean)



FADS on MVTec AD dataset (whole image)
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FADs AUC score on each class

FADs achieves an average AUC of 0.93

ROC for pill category



FADS can also highlight the anomalies
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By taking the gradient to minimize the 
anomaly score with respect to the input, the 
pixels that contribute to anomalousness are 
highlighted
oVery sensitive – wood image picks up a 
scuff that is barely visible for instance

oStill fast as it uses a single backward pass



FADS can also highlight the anomalies
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FADS against a real world application
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Additive Manufacturing
  (right) Localizing flaws in real prints
  (below) Dedicated print testing: Using just 
images, identify defective parts with incorrect 
print process settings
• “Trained” on 18 lattices
• Result: Avg AUC of 0.99

3-D Printed Lattice
Visualization of the regions causing high anomaly scores



FADS key insights
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• Powerful transfer learning from models pretrained on 
massive, unrelated datasets 

• Features relevant to separate normal from abnormal 
examples highlighted without supervision

• Limited number of training examples adequate for 
high accuracy



Credible Automated 
Meshing of Images

Scott Roberts, PI
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Credible, Automated Meshing of Images (CAMI) LDRD
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Physics simulationRaw greyscale image (XCT) Surface mesh (STL)

Volume  mesh

Segmentation:
- Automated: deep 

learning
- Repeatable

Interface 
Identification: 
- Automated
- Marching cubes 

on smooth data

Meshing:
- CDFEM + snap + 

Emend
- High quality

Uncertainty Quantification:
- Propagate uncertainty 

through physics predictions
- Binarization 
- Interface identification
- Meshing/resolution

Segmented image

Credible, automated image-based simulation will revolutionize engineering analysis of as-built parts.



Segmentation is a classic computer vision problem 
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Image segmentation is well studied
oSmall files
o Large training sets

CT segmentation is different
oVolumetric; larger files
oClass imbalance (lots of background)
oNoise/artifacts in scans
oSmall training sets with “bad” human labels
o Inconsistent scan quality (domain shift)

Medical researchers are leading this work toward Deep 
Learning solutions

Rattlesnake Tail 
(~1e9  voxels)

Cityscape
(~1e5 pixels)

https://www.cityscapes-dataset.com/



Mitigating challenges
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Volumetric; larger files
o Train with random subvolumes

Class imbalance (lots of background)
o Loss function sets weights inversely with 
class fraction for each subvolume

o Normalization methods can separate 
foreground from background

Noise/artifacts in scans
o Convolutional Neural Network (CNN) 
architecture learns to recognize shapes

Small training sets with “bad” human 
labels
o 1-3 volumetric training examples is often 
sufficient

o Errors in labels are overcome if the errors 
are inconsistent

Inconsistent scan quality (domain shift)
o Use UQ to drive corrections to predictions
o Cari’s dissertation!



Supervised: Encoder-decoder network with skip connections
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V-Net architecture for segmenting volumetric data (2016)

Encoder learns features at different resolutions

Decoder uses encoded features passed via skip 
connections for segmentation

U-net: significant advance for biomedical 
segmentation

◦ Olaf Ronneberger, Philipp Fischer, Thomas Brox , “U-
Net: Convolutional Networks for Biomedical Image 
Segmentation”, in Medical Image Computing and 
Computer-Assisted Intervention (MICCAI), Springer, 
LNCS, Vol.9351: 234--241, 2015 

V-net follows as a natural extension to handle 3D 
images

◦ F. Milletari, N. Navab, and S. A. Ahmadi, “V-net: Fully 
convolutional neural networks for volumetric medical 
image segmentation,” in 2016 Fourth International 
Conference on 3D Vision (3DV), Oct 2016, pp.565–
571



Example: Train V-Net to segment batteries
21

DOMAIN 
NAME  ACCURACY
E35 0.984

Tesla 0.973

Litarion 0.966

25R6 0.955

Electrode_I_1 0.948

Electrode_III_1 0.945

GCA400 0.928

Electrode_IV_1 0.917

Electrode_II_2 0.902

GCA2000 0.900

Electrode_I_2 0.892

Electrode_III_2 0.773

Electrode_IV_3 0.748

Electrode_IV_2 0.745

Electrode_II_3 0.699

Electrode_III_3 0.668

Mean 0.8714375

Litarion Electrode IV_1

TRAINING SET

TEST SET

E35 GCA400 Electrode II_3



Inference results in training domain are as expected22

ML predictionHuman label Litarion CT scan slice

ML segmentation is 96.6% accurate to the human label



Inference results outside the training domain are 
qualitatively better than accuracy measurements indicate
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ML predictionHuman label Electrode II_3 CT scan slice

ML segmentation is 69.9% accurate to the human label…but looks qualitatively better



Alternative approach: CycleGAN translates images between domains

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv 
preprint.
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Learns two functions:
F(x) = Horse to 
zebra
G(x) = Zebra to 
horse

Cycles back to starting 
point to learn without 
paired examples

F(G(x)) = x



CT Slice Style Swapped Cycled Back

CycleGAN translates between material domains capturing relevant features

Battery  Foam  Battery
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Foam  Battery  Foam

CycleGAN provides a rough segmentation of both battery and foam



Semi-supervised: Domain adaptation can reduce supervised labeling cost

Repurpose labels from one domain 
(battery) to another domain (foam)
oCycleGAN transforms foam CTs 
into the “style” of battery labels

oSemi-supervised

Hand-labeled small slices from 7 CT 
scans of foam

Used 2 labels to select stopping 
point

Inferred over remaining 5 volumes 
Post-process (fill in gaps) with 
standard CV methods

Average 94.8% accuracy when 
compared with human labeled 
slices

Battery

ML predictionCT Scan

Foam
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Data preprocessing and augmentation27

Making the problem as easy as possible for the DL 
algorithm with preprocessing can dramatically 
improve results
oChoose normalization function that helps to separate 
challenging classes

oManual inspection is important for selecting the best 
methods

oExample: Using log function might push most of the 
background to negative values

Data augmentation methods
o Flip along each axis
oGenerate synthetic data from perfect numerical models: 
ASTRA toolbox https://www.astra-toolbox.com/

Numerical model of material

Slice of synthetic CT scan

Martinez, Carianne, et al. "Automated Segmentation of Porous 
Thermal Spray Material CT Scans with Geometric Uncertainty 
Estimation.“ SAND2020-9099

https://www.astra-toolbox.com/


Image segmentation uncertainty
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Uncertainty can be used to inform segmentation29

Neural networks measure per-voxel segmentation uncertainty
Provides a measure of the model’s credibility on a particular task
Enables neural networks to overcome domain shift 
o This additional information offers an insight into the model
oNew ways to mitigate common problems

Slice of scan of woven 
composite material

Uncertainty map - brighter 
pixel values indicate higher 

uncertainty

High uncertainty indicates this model 
should not be trusted in this domain

Unusable 
segmentation

CT slice from shifted 
domain Refined segmentation

Predict segmentation 
using model trained 
on original domain

Apply advanced 
uncertainty based 
refinement method

Uncertainty map

+

We leverage uncertainty maps to enable generalization of a trained model to shifted domains

Martinez, C., et al. (2019). Segmentation certainty through uncertainty: Uncertainty-refined binary volumetric segmentation under multifactor domain shift. In Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition Workshops (pp. 0-0).



Happy accident leads to anomaly detection algorithm 
(Kyle Karlson)30

Training the neural network on the wrong labels resulted in poor segmentations but high 
uncertainty around interesting features
Preliminary result – requires further research and validation

Potential Impact: Uncertainty can highlight anomalous regions



Efficient Quantification of Uncertainty in Image-based Physics Simulations 
(EQUIPS)
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Krygier, M. C., LaBonte, T., Martinez, C., Norris, C., Sharma, K., Collins, L. N., ... & Roberts, S. A. (2021). Quantifying the unknown impact of segmentation uncertainty on image-based 
simulations. Nature communications, 12(1), 1-11.



Exemplar: Thermal protection system (TPS) materials
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CAMI key insights
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• Volumetric segmentation of materials can be 
credibly automated with few labeled examples.

• Image-based simulations can be sensitive to 
small changes in geometries.

• Deep learning models can interpret images into 
geometries with uncertainty.

• A subset of simulations can characterize 
expected system properties.



Beyond Fingerprinting 
Grand Challenge LDRD

Brad Boyce and Remi Dingreville, Co-PIs
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Goal: AI-enabled high-throughput materials co-design
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Fabrication: thin films (laser powder bed fusion, 
electroplating, physical vapor deposition), semiconductor 
components, integrated lasers and silicon photonics
Process: high-dimensional control parameter space
Structure: molecular/mesoscale description of material
Property: targeted mechanical/electromagnetic property 

High-throughput fabrication                    High-throughput characterization



Hybrid-informed multilayer algorithm (Himulaya)
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Objective: Exploit multimodality spanning process-structure-property gap,

embed physical modeling expertise, learn fingerprints to detect, prognose + adapt



PIMA – physics-informed multimodal autoencoder (Nat Trask)
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SME 
Model

Multimodal Data Prediction

Informal Idea:
We discover a 
shared latent 

representation of 
data providing a 
Rosetta stone for 
across modalities
w/ uncertainty
estimation

Formal Idea:
• Gaussian product 
distribution gives deep 

posterior embedding for 
each modality

• Gauss mixture prior in 
latent space identifies 

populations in data across 
modalities

• Closed form expressions 
for loss – no Monte Carlo
• Supports Bayesian 

inference across modalities

Modal Fusion
Trask, N., Martinez, C., Lee, K., & Boyce, B. (2022). Unsupervised physics-informed disentanglement of multimodal data for high-throughput scientific 
discovery. arXiv preprint arXiv:2202.03242 .



Conclusion

Digital twin building blocks:
 Advances in automated processing of multimodal data
 Leveraging transfer learning 
 Uncertainty quantification for each workflow step
 Incorporation of domain knowledge 
 Integrated interdisciplinary teams 
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Questions?
cmarti5@sandia.gov


