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How do we build digital twins?

Challenges:

oldealized models fail to capture impact of defects.
oOverwhelming amounts of data cannot be manually analyzed.
oUncertainty lurks everywhere.

oLimited or incomplete data availability constrains Al approaches.

Practical approaches:
oNondestructive multimodal data collection can characterize systems.
oDeep learning models can ingest all the data to predict a range of system properties.

oDomain knowledge can be incorporated to improve models and interpret predictions.



Emerging capabilities enable digital twins

Advances in computer vision
o Feature-based Anomaly Detection System (FADS)

> VVolumetric segmentation

Uncertainty quantification for image-based
simulation

o Efficient Quantification of Uncertainty in Image-
based Physics Simulations (EQUIPS) workflow

Beyond Fingerprinting
> Physics-Informed Multimodal Autoencoders (PIMA)




Automatic anomaly detection in
high reliability as-built parts
from images

Kevin Potter, Anthony Garland



// Feature Based Anomaly Detection System (FADS)
Anthony Garland
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Example nominal data (hazelnuts)

Extends the deep-one-class classification idea

nominal nominal nominal
Works via a pretrained network to provide the
mapping
* Record the activations from the model'’s
convolutional filters
« Aggregate each filter to a single value (max, nominal nominal pominal
min, mean, etc.)
« Develop a statistical model of expected
convolutional activations ( ¥ and o) based on the
nominal images' activations

« At inference time, measure activation of the nominal nominal nominal
input image from the same model and
normalize based on the nominal statistics
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CNN activations

Input Image
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Aggregate activations

Collapse each filter’s activations to a single value and stack
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Nominal images
(“training” set)
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Learn the nominal datasets activation stats for each filter
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P’ 2-D FADS example — inference normalization
,/ Feature activations
o

Resnet 152
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/" 2-D FADS example — converting to a threshold
/4
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FADS on MVTec AD dataset (whole image)

ROC for pill category
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— AUC ROC 0.88, Img5z 512, Model 152
=== AUC_ROC 0.85, Img5z 512, Model 18
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—— AUC_ROC 0.89, Img5z 256, Model 152
AUC_ROC 0.89, Img5z 1024, Model 152
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FADS can also highlight the anomalies

By taking the gradient to minimize the
anomaly score with respect to the input, the
pixels that contribute to anomalousness are
highlighted
o Very sensitive — wood image picks up a
scuff that is barely visible for instance

o Still fast as it uses a single backward pass




/7~ FADS can also highlight the anomalies
74
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/" FADS against a real world application
/d

/ Additive Manufacturing
(right) Localizing flaws in real prints

(below) Dedicated print testing: Using just
images, identify defective parts with incorrect
print process settings

e “Trained” on 18 lattices
*  Result: Avg AUC of 0.99

' Visualization of the regions causing high anomaly scores
3-D Printed Lattice
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FADS key insights

Powerful transfer learning from models pretrained on
massive, unrelated datasets

* Features relevant to separate normal from abnormal
examples highlighted without supervision

« Limited number of training examples adequate for
high accuracy
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Credible Automated
Meshing of Images

Scott Roberts, PI
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” Credible, Automated Meshing of Images (CAMI) LDRD

/Iiaw greyscale image (XCT)

Segmented image

>

- Automated: deep ) $ |
learning » ‘
y

- Repeatable S

MV ST
Segmentation: v ‘\ Interface

Surface mesh (STL)

|[dentification:
- Automated
|| -~~~ Marching cubes
on smooth data

Physics simulation

Meshing:

- CDFEM + snap +
Emend

- High quality

Volumey mesh

Uncertainty Quantification:
- Propagate uncertainty
through physics predictions
- Binarization
- Interface identification
- Meshing/resolution

Credible, automated image-based simulation will revolutionize engineering analysis of as-built parts.




//Segmentation IS a classic computer vision problem
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Image segmentation is well studied
o Small files

o Large training sets

CT Segmentation iS different https://www.cityscapes-dataset.com/
o Volumetric; larger files Cityscape
(~1e5 pixels)

o Class imbalance (lots of background)

o Noise/artifacts in scans

o Small training sets with “bad” human labels
o Inconsistent scan quality (domain shift)

Medical researchers are leading this work toward Deep
Learning solutions

Rattlesnake Tail
(~1e9 voxels)
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'/~ Mitigating challenges

/
/ Volumetric; larger files
o Train with random subvolumes

Class imbalance (lots of background)
o Loss function sets weights inversely with
class fraction for each subvolume

o Normalization methods can separate
foreground from background

Noise/artifacts in scans

o Convolutional Neural Network (CNN)
architecture learns to recognize shapes

Small training sets with “bad” human
labels

o 1-3 volumetric training examples is often
sufficient

O Erro_rs in Ia_bels are overcome if the errors
are inconsistent

Inconsistent scan quality (domain shift)
o Use UQ to drive corrections to predictions

o Cari’s dissertation!
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Encoder learns features at different resolutions

Decoder uses encoded features passed via skip
connections for segmentation

U-net: significant advance for biomedical
segmentation

> Olaf Ronneberger, Philipp Fischer, Thomas Brox , “U-
Net: Convolutional Networks for Biomedical Image
Segmentation”, in Medical Image Computing and
Computer-Assisted Intervention (MICCAI), Springer,
LNCS, Vol.9351: 234--241, 2015

V-net follows as a natural extension to handle 3D
images
o F. Milletari, N. Navab, and S. A. Ahmadi, “V-net: Fully
convolutional neural networks for volumetric medical
image segmentation,” in 2016 Fourth International
Conference on 3D Vision (3DV), Oct 2016, pp.565—
571

'~ Supervised: Encoder-decoder network with skip connections
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V-Net architecture for segmenting volumetric data (2016)
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//Example: Train V-Net to segment batteries

TRAINING SET

- g
P

i 9,.;‘;

DOMAIN

NAME ACCURACY
E35 0.984
Tesla 0.973
Litarion 0.966
25R6 0.955
Electrode | 1 0.948
Electrode Ill_1 | 0.945
GCA400 0.928
Electrode IV_1 | 0.917
Electrode Il _2 | 0.902
GCA2000 0.900
Electrode | 2 | 0.892
Electrode Ill 2 | 0.773
Electrode IV _3 | 0.748
Electrode IV _2 | 0.745
Electrode Il_3 | 0.699
Electrode Ill_3 | 0.668
Mean 0.8714375
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P/Inference results in training domain are as expected
/
/

Litarion CT scan slice Human label

ML segmentation is 96.6% accurate to the human label



/ﬁference results outside the training domain are
/7 qualitatively better than accuracy measurements indicate

ML segmentation is 69.9% accurate to the human label...but looks qualitatively better
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/ 7 Alternative approach: CycleGAN translates images between domains

4

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv
preprint.

Zebras . Horses

Learns two functions:
F(x) = Horse to
zebra
G(x) = Zebra to
horse

Cycles back to starting
point to learn without
paired examples

F(G(x)) = x




// CycleGAN translates between material domains capturing relevant features
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CT Slice =) Style Swapped =mmm) Cycled Back

Battery - Foam - Battery

Foam -> Battery - Foam izt imm s

CycleGAN provides a rough segmentation of both battery and foam




// Semi-supervised: Domain adaptation can reduce supervised labeling cost
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Repurpose labels from one domain
(battery) to another domain (foam)
o CycleGAN transforms foam CTs
into the “style” of battery labels

o Semi-supervised

Hand-labeled small slices from 7 CT
scans of foam

Used 2 labels to select stopping
point

Inferred over remaining 5 volumes

Post-process (fill in gaps) with
standard CV methods

Average 94.8% accuracy when
compared with human labeled
slices
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7 Data preprocessing and augmentation
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Making the problem as easy as possible for the DL
algorithm with preprocessing can dramatically
Improve results
o Choose normalization function that helps to separate
challenging classes

o Manual inspection is important for selecting the best
methods

o Example: Using log function might push most of the
background to negative values

Data augmentation methods
o Flip along each axis

o Generate synthetic data from perfect numerical models:

ASTRA toolbox https://www.astra-toolbox.com/

Numerical model of material

400 -

600 4

1000 4,

0 200 400 600 800 1000

Martinez, Carianne, et al. "Automated Segmentation of Porous
Thermal Spray Material CT Scans with Geometric Uncertainty
Estimation.” SAND2020-9099



https://www.astra-toolbox.com/

/,
P/ Image segmentation uncertainty
/




7 Uncertainty can be used to inform segmentation

/ Slice of scan of woven Uncertainty map - brighter
composite material pixel values indicate higher
/ uncertainty

Neural networks measure per-voxel segmentation uncertainty

/ E
I

Provides a measure of the model’s credibility on a particular task

Enables neural networks to overcome domain shift
o This additional information offers an insight into the model

o New ways to mitigate common problems ' o i
High uncertainty indicates this model
should not be trusted in this domain

We leverage uncertainty maps to enable generalization of a trained model to shifted domains

CT slice from shifted Unusable j . .
domain segmentation Uncertainty map Refined segmentation

Predict segmentation Apply advanced

using model trained uncertainty based

on original domain | refinement method |

Martinez, C., et al. (2019). Segmentation certainty through uncertainty: Uncertainty-refined binary volumetric segmentation under multifactor domain shift. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (pp. 0-0).




/Happy accident leads to anomaly detection algorithm

7 (Kyle Karlson)
/

+

/ Training the neural network on the wrong labels resulted in poor segmentations but high
uncertainty around interesting features

Preliminary result — requires further research and validation
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Potential Impact: Uncertainty can highlight anomalous regions
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/> Efficient Quantification of Uncertainty in Image-based Physics Simulations
/ (EQUIPS)
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Krygier, M. C., LaBonte, T., Martinez, C., Norris, C., Sharma, K., Collins, L. N., ... & Roberts, S. A. (2021). Quantifying the unknown impact of segmentation uncertainty on image-based
simulations. Nature communications, 12(1), 1-11.
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P CAMI key insights

Volumetric segmentation of materials can be
credibly automated with few labeled examples.

* Image-based simulations can be sensitive to
small changes in geometries.

* Deep learning models can interpret images into
geometries with uncertainty.

* A subset of simulations can characterize
expected system properties.
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Beyond Fingerprinting
Grand Challenge LDRD

Brad Boyce and Remi Dingreville, Co-Pls




Goal: Al-enabled high-throughput materials co-design Sandia

Laboratories

Rotating working Gas collection tube,
& ring electrodes solution

Reference w/ detachable addition/removal
electrode substrate pump, NMR sample
collection...
Conductivity PH, O,... Probe

meter
O-ring
3;?\':: ;vr:;c::; ig:::nal Figure 7. Aq example witness artifact rn'?!:rr
Counter Electrode spectroscopies (IR, Emb'ﬂ,m‘?ld measurement Df_“ matend
Raman) properties in a compact footprint.
High-throughput fabrication High-throughput characterization
Structure
Fabrication: thin films (laser powder bed fusion, s

Feedback loop

electroplating, physical vapor deposition), semiconductor
components, integrated lasers and silicon photonics
Process: high-dimensional control parameter space
Structure: molecular/mesoscale description of material
Property: targeted mechanical/electromagnetic property
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Hybrid-informed multilayer algorithm (Himulaya) Leoracaries
Feedback loop
Mod/Sim
rb“ ' " md'n "" nl m "i )
Reduce error in NN =

E&fx.w = fNH{X}-dA E

' AN(X) — Black-box Huxes 1
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(1) Structure-preserving

L
(2) Physics-informed

1 PDE constraints °

1 Rsaction kinetics x:
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Diflusion
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Structure- ' Friction

Property
Predictions
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« Discovery >

(3) Physics-agnostic ("black box")

Process Multi-modal Hybrid-informed Multilayer System-level Materials
Data Algorithms Integration Reliability

1

Performance measurements / high-throughput testing

Objective: Exploit multimodality spanning process-structure-property gap,
embed physical modeling expertise, learn fingerprints to detect, prognose + adapt
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PIMA — physics-informed multimodal autoencoder (Nat Trask)

N(m4,Z,)

B
e
N(.5)

N(p2Z,)

Multimodal Data Modal Fusion Prediction

Trask, N., Martinez, C., Lee, K., & Boyce, B. (2022). Unsupervised physics-informed disentanglement of multimodal data for high-throughput scientific
discovery. arXiv preprint arXiv:2202.03242.

e f— Formal Idea:
Informal Idea: - TR | i + Gaussian product

We discover a T, - : distribution gives deep
T e 2 ' posterior embedding for

shared latent BN F . each modality

representation of it  Gauss mixture prior in
latent space identifies

data providing a g = Ry % % _ ' | populations in data across

Rosetta stone for i . : Hi modalities
" ; * Closed form expressions

across modalities aaghi’ '\ 8 for loss — no Monte Carlo
w/ uncertaint o, « Supports Bayesian

inference across modalities

Sandia
National _
Laboratories



Sandia

Conclusion ational s

Digital twin building blocks:

= Advances in automated processing of multimodal data Structure

= Leveraging transfer learning

Detect - Prognose

= Uncertainty quantification for each workflow step pd.

= |ncorporation of domain knowledge Accelerated

= [RR——

= |ntegrated interdisciplinary teams

Process




Questions?
cmartib@sandia.gov
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