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CT Radiography at Sandia National Laboratories

Over a dozen fixed and fieldable Computed Tomography and Radiography systems
Film
Computed Radiography
Digital Radiography
Computed Tomography

Wide applications capability
10 keV to 9 MeV

Mini-focus to nano-focus

Our customers and stakeholders continue to push for richer and higher fidelity information

This is great!



3 | Limitations of CT for Quantitative Digital Imaging

Several types of metrics are desired for various NDE applications

Metrology
Part dimensions
Part deformations
Before/After event evaluations

Material Identification and Classification

Anomaly detection

PROBLEM: Traditional Computed Tomography is highly nonlinear!!
Beam hardening artifacts
Streaking due to photon starvation

Various materials can appear identical to other materials



Unprecedented Insight

Goal: Novel X-ray CT Capability
Transform National Security Missions
Unprecedented Imaging Resolutions
Reliably Identify Material Composition

Revolutionize Industrial and Security-
based Non-Destructive Evaluation
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What 1s Hyperspectral CT?

Traditional X-ray image Traditional X-ray CT

* Traditional X-ray Image -Single Gray-scale Image per Scan
 X-rayimaging is defined by a nonlinear mathematical operator!



Hyperspectral Computed Tomography

Traditional Computed Tomography almost always uses
Wide energy spectrum source
Scintillation-based detector material coupled with light sensors

Result: Integrating detector that indirectly measures averaged energy intensity

CT vs. Hyperspectral CT
Measure the photon AND its energy

Hardware difference is only the type of detector that is used
Semiconducting material — typically Cadmium Telluride

Each detector pixel outputs a set of values instead of a single number per projection



7 | Data— Traditional vs. Spectral X-ray Input Data

Bin 0 - 2 keV Bin K - 150 keV Bin N - 300 keV



s | Prototype System at Sandia ®

In 2016, Sandia built a prototype system
640 pixels at a 0.8 mm pitch

128 Channels from 20 to 300 keV
Customized Multix ME100 modules
Comet 450 keV X-ray Source

Original Goal:
Improve image quality through bandpass filtering

Investigate big data challenges

128 channels = 128x more data!
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n | Advantages of Hyperspectral CT

= Single-Channel for Effective
Bandpass filter

= Linearizes the imaging system

= Improved Reconstruction Quality
through artifact reduction




2 | Reconstruction - Even Simple Objects have Artifacts! ®

Traditional Reconstruction Single Bin Reconstruction

* Summed bin data * Identical Reconstruction Algorithm
* Streaking emanating from objects ° Reduced Artifacts

* Beam hardening * Uniform Sample Value



13 | “Huh...well that’s interesting...”

Mean Profile Mean Profile
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“Curiouser and curiouser...’
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15 | Unsupervised Learning...quick excursion!

Six materials
Isolated
Artifacts on edges of cylinders

Highly similar spectral data



16 « DATASETS: CERAMIC CYLINDERS WITH COIN AND BLOCK

Permuted material positions
Added steel penny and wood

Penny and block absorb signal, create
additional artifacts

IncLeased difficulty in material identification
tas



17 - DATASETS: CERAMIC CYLINDERS @

Six materials

Isolated
Artifacts on edges of cylinc
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s - DATASETS: CERAMIC CYLINDERS 0

Six materials
Isolated
Artifacts on edges of cylinders

Highly similar spectral data
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19 - DATASETS: CERAMIC CYLINDERS ®

Six materials

Isolated
Artifacts on edges of cyling

Highly similar spectral data
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0 | Achievements of H-CT Effort

Beam hardening artifact reduction through band passed spectral data.

Demonstrated material identification capability.

Supervised Learning
Koundinyan et. Al. - Perform Machine Learning based Material Identification of various liquids, metals, and plastics

Unsupervised Learning
Gallegos et. Al. - Performed Classification of various ceramics of similar density and molecular composition

Four patents filed
3 granted
1in review



21 |« We’re not out of the woods yet...What did we learn?

Temperature sensitivity
Detector pixel responses seem to be temperature dependent
Fixed sensitivity bias was also observed
Calibrating was a huge challengel!

Ring artifacts is the main consequence

Photon starved even with long exposures

Poor quality reconstructions

For single channels, some have poor penetration, low photon signal, or both!

Partial voxel occupancy 1s significant for this system

Affects the edges of objects as their spectral signature will represent 2 or more materials



22 | Temperature Sensitivity

For every data acquisition:

Severe ring artifacts were observed
Beyond typical ring removal
Detector responses changed over time

Virtually impossible to calibrate!

Although temperature can be queried, it may be
difficult to do in practice in a robust manner.

As the electronics are run, the equipment heats up
over time.

Additionally, environmental changes may affect the
sensitivity.




23 | Temperature Sensitivity
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Photon Starvation — Simulation of Sugar Water

Question:

For a given allocation of photons, are all channels
sufficiently saturated?

Experiment:

Monte-Carlo simulation of typical Bremsstrahlung
Radiation profile through samples of sugar water
at various concentrations.

Eliminate other sources of noise, purely photon
signal dependent.

Goal;

Determine if every (or almost every) channel can
provide a CT reconstruction of sufficient quality.



25 | Photon Starvation — Simulation of Sugar Water

Traditional Feldkamp Reconstruction

Even for simple objects and arrangements, streaking
artifacts dramatically affect image quality.

To be expected for low and high index channels.

Streaking is dramatic at every channel!




26 |« Maybe H-CT 1sn’t so simple?

Implementing a Hyperspectral System likely involves a more significant deviation from traditional CT
than just swapping out the detector?

Calibration
Acquisition time

Sparse signal

What if we swapped out reconstruction algorithms?

[terative reconstruction
Robust with sparse signals
Could shorten acquisition time

Could alleviate calibration requirements (sort of...)



»7 | Iterative Reconstruction — A Possible Solution

PARENTAL




s | Iterative Reconstruction - A Possible Solution

[terative Reconstruction
Prohibitive in the past

Challenge 1: 10x to 100x more computationally expensive than direct reconstruction

Challenge 2: 100x more data!
We developed an implementation using multiple graphics processors in parallel for a high-performance computing solution.

Maximum Likelihood Expectation Maximization:

n(k+1) — (k)_ Im
plk+1) — B Z ) H




29 | Maximum Likelihood Expectation Maximization -
|




30 | FDK vs. MLEM - Monte Carlo Simulations




31« FDK vs. MLEM - Wax Samples







33 | FDK vs MLEM - Ceramic Samples - Wood Region




34 | Looking to the Future

This year, we are building a new system
Current generation detector technology
Better thermal regulation - more robust detector response?
High count rates - High flux system output for faster acquisition

Investigating Multi-metal patterned anodes
Preferential spectrum shape for maximum signal quality

Improved system resolution

Expand application spaces
Counterfeit detection

Spectral decomposition to chemical composition



