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CT Radiography at Sandia National Laboratories

 Over a dozen fixed and fieldable Computed Tomography and Radiography systems
 Film
 Computed Radiography
 Digital Radiography
 Computed Tomography

 Wide applications capability
 10 keV to 9 MeV
 Mini-focus to nano-focus

 Our customers and stakeholders continue to push for richer and higher fidelity information
 This is great!



Limitations of CT for Quantitative Digital Imaging

 Several types of metrics are desired for various NDE applications
 Metrology
 Part dimensions

 Part deformations 

 Before/After event evaluations

 Material Identification and Classification
 Anomaly detection

 PROBLEM: Traditional Computed Tomography is highly nonlinear!!
 Beam hardening artifacts

 Streaking due to photon starvation

 Various materials can appear identical to other materials
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Unprecedented Insight4

 Goal: Novel X-ray CT Capability

 Transform National Security Missions 

 Unprecedented Imaging Resolutions

 Reliably Identify Material Composition

 Revolutionize Industrial and Security-
based Non-Destructive Evaluation



What is Hyperspectral CT?5

Traditional X-ray image

• Traditional X-ray Image –Single Gray-scale Image per Scan
• X-ray imaging is defined by a nonlinear mathematical operator!

Traditional X-ray CT



Hyperspectral Computed Tomography

 Traditional Computed Tomography almost always uses
 Wide energy spectrum source
 Scintillation-based detector material coupled with light sensors
 Result: Integrating detector that indirectly measures averaged energy intensity

 CT vs. Hyperspectral CT
 Measure the photon AND its energy
 Hardware difference is only the type of detector that is used
 Semiconducting material – typically Cadmium Telluride 
 Each detector pixel outputs a set of values instead of a single number per projection
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Data– Traditional vs. Spectral X-ray Input Data

Bin 0 – 2 keV Bin N – 300 keV
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Bin K – 150 keV 

… …



Prototype System at Sandia

 In 2016, Sandia built a prototype system
 640 pixels at a 0.8 mm pitch
 128 Channels from 20 to 300 keV
 Customized Multix ME100 modules
 Comet 450 keV X-ray Source

 Original Goal:
 Improve image quality through bandpass filtering
 Investigate big data challenges
 128 channels = 128x more data!
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…250keV & 300keV9



…250keV & 300keV
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Advantages of Hyperspectral CT

 Single-Channel for Effective 
Bandpass filter

 Linearizes the imaging system

 Improved Reconstruction Quality 
through  artifact reduction
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Reconstruction - Even Simple Objects have Artifacts!12

Traditional Reconstruction
• Summed bin data
• Streaking emanating from objects
• Beam hardening

Single Bin Reconstruction
• Identical Reconstruction Algorithm
• Reduced Artifacts
• Uniform Sample Value



“Huh…well that’s interesting…”13



“Curiouser and curiouser…”14



Unsupervised Learning…quick excursion!

o  Six materials

o  Isolated 

o  Artifacts on edges of cylinders

o  Highly similar spectral data
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DATASETS: CERAMIC CYLINDERS WITH COIN AND BLOCK

o   Permuted material positions

o   Added steel penny and wood

o Penny and block absorb signal, create 
additional artifacts

o Increased difficulty in material identification 
task
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Achievements of H-CT Effort

Beam hardening artifact reduction through band passed spectral data.

Demonstrated material identification capability.
 Supervised Learning
 Koundinyan et. Al. – Perform Machine Learning based Material Identification of various liquids, metals, and plastics

 Unsupervised Learning
 Gallegos et. Al. – Performed Classification of various ceramics of similar density and molecular composition

 Four patents filed
 3 granted
 1 in review
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We’re not out of the woods yet…What did we learn?

 Temperature sensitivity
 Detector pixel responses seem to be temperature dependent
 Fixed sensitivity bias was also observed
 Calibrating was a huge challenge!
 Ring artifacts is the main consequence

 Photon starved even with long exposures
 Poor quality reconstructions
 For single channels, some have poor penetration, low photon signal, or both!

 Partial voxel occupancy is significant for this system
 Affects the edges of objects as their spectral signature will represent 2 or more materials
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Temperature Sensitivity

 For every data acquisition:
 Severe ring artifacts were observed
 Beyond typical ring removal
 Detector responses changed over time
 Virtually impossible to calibrate!

 Although temperature can be queried, it may be 
difficult to do in practice in a robust manner.

As the electronics are run, the equipment heats up 
over time.

 Additionally, environmental changes may affect the 
sensitivity.

22



Temperature Sensitivity23

 For every data acquisition:
 Severe ring artifacts were observed
 Beyond typical ring removal
 Detector responses changed over time
 Virtually impossible to calibrate!

 Although temperature can be queried, it may be 
difficult to do in practice in a robust manner.

As the electronics are run, the equipment heats up 
over time.

 Additionally, environmental changes may affect the 
sensitivity.



Photon Starvation – Simulation of Sugar Water 24

Question:
 For a given allocation of photons, are all channels 

sufficiently saturated?

Experiment:
 Monte-Carlo simulation of typical Bremsstrahlung 

Radiation profile through samples of sugar water 
at various concentrations.

 Eliminate other sources of noise, purely photon 
signal dependent.

Goal:
 Determine if every (or almost every) channel can 

provide a CT reconstruction of sufficient quality. 



Photon Starvation – Simulation of Sugar Water 

Traditional Feldkamp Reconstruction
 Even for simple objects and arrangements, streaking 

artifacts dramatically affect image quality.
 To be expected for low and high index channels.
 Streaking is dramatic at every channel!
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Maybe H-CT isn’t so simple?

 Implementing a Hyperspectral System likely involves a more significant deviation from traditional CT 
than just swapping out the detector?
 Calibration
 Acquisition time
 Sparse signal

 What if we swapped out reconstruction algorithms?
 Iterative reconstruction
 Robust with sparse signals

 Could shorten acquisition time

 Could alleviate calibration requirements (sort of…)
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Iterative Reconstruction – A Possible Solution27



Iterative Reconstruction – A Possible Solution28

Iterative Reconstruction
 Prohibitive in the past
 Challenge 1: 10x to 100x more computationally expensive than direct reconstruction
 Challenge 2: 100x more data!

 We developed an implementation using multiple graphics processors in parallel for a high-performance computing solution.

 Maximum Likelihood Expectation Maximization:



Maximum Likelihood Expectation Maximization29

Initial Object Guess Estimated Object Simulate Images from 
current object

Back project image 
discrepancies

Compare differences 
in simulated images to 

measured images

Real X-ray DataUpdate Images



FDK vs. MLEM – Monte Carlo Simulations30



FDK vs. MLEM – Wax Samples31



FDK vs MLEM – Ceramic Samples – Wood with Steel32



FDK vs MLEM – Ceramic Samples – Wood Region33



Looking to the Future

 This year, we are building a new system
 Current generation detector technology
 Better thermal regulation – more robust detector response?
 High count rates – High flux system output for faster acquisition

 Investigating Multi-metal patterned anodes
 Preferential spectrum shape for maximum signal quality
 Improved system resolution

 Expand application spaces
 Counterfeit detection
 Spectral decomposition to chemical composition
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