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Abstract—Modern distribution systems can accommodate
different topologies through controllable tie lines for increasing
the reliability of the system. Estimating the prevailing circuit
topology or configuration is of particular importance at the
substation for different applications to properly operate and
control the distribution system. One of the applications of circuit
configuration estimation is adaptive protection. An adaptive
protection system relies on the communication system
infrastructure to identify the latest status of power. However,
when the communication links to some of the equipment are
outaged, the adaptive protection system may lose its awareness
over the status of the system. Therefore, it is necessary to estimate
the circuit status using the available healthy communicated data.
This paper proposes the use of machine learning algorithms at the
substation to estimate circuit configuration when the
communication to the tie breakers is compromised. Doing so, the
adaptive protection system can identify the correct protection
settings corresponding to the estimated circuit topology. The
effectiveness of the proposed approach is verified on IEEE 123 bus
test system.

Index Terms—Adaptive protection, circuit configuration
estimation, distribution system, machine learning.

I. INTRODUCTION

Modern distribution systems (DS) can accommodate
different circuit topologies for increasing the reliability of
distribution systems. To this end, tie lines are installed at
different locations of distribution circuits to provide an
alternative source of power to the congested branches or
branches hosting critical loads [1]-[2]. Each tie line has a
breaker that can be controlled remotely from the DS control
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center to change the DS circuit topology. Estimating the
prevailing circuit topology at the DS substation is of particular
importance for different DS applications when the
communication of the substation controller to the tie breakers
is outaged or compromised due to cyber-attacks. One of the
applications for which proper circuit topology estimation is
critical is adaptive protection of distribution systems. An
adaptive protection system is defined as a system that is
responsive to the changes in the power system, e.g., its topology
and generation profile, and can update protection relays’
settings in real-time through the DS communication network
[1]-[5]. An adaptive protection system highly relies on the
communication network to identify the latest status of DS (e.g.,
circuit topology). However, when the communication links to
some of the tie breakers are outaged due to physical damages
or cyberattacks, the adaptive protection system fails to identify
the prevailing circuit topology for calculating proper settings
for the DS protection relays. Therefore, it is of paramount value
to estimate the circuit topology using the available healthy
communicated data [6]. The proposed algorithm uses the
available measurements from the relays that still have
communication to estimate the state of the other switches with
lost communication. After topology estimation is performed,
the adaptive protection system will use the topology to
determine the appropriate protection settings for the relays.

In the literature, state estimation has been used as the
common approach for circuit topology estimation in DS [7]. In
[8], a weighted least square state estimator is utilized to identify
the status of circuit breakers by accounting for their active and
reactive power flow. A state estimation technique for topology
processing and estimation is proposed in [9]. In [10], Bayesian
estimation is introduced as a linear least square estimation
problem for improving the performance of weighted least
square state estimators that require extended number of sensors.
Alternatively, data-driven and learning-based state estimation
techniques have been proposed in [11]-[15] to improve the
performance of conventional state estimation methods.

In this paper, the objective is to estimate the circuit topology
when the adaptive protection system has limited access to a few
of the protection relays and tie breakers in the system. Although
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the state estimation techniques can estimate circuit topology
effectively, they require extensive communication to different
locations of the circuit. This paper proposes the use of machine
learning to estimate circuit topology at the substation when the
communication links to the tie breakers are outaged. The
proposed approach utilizes a support vector machine (SVM)
and logistic regression (LR) as classifiers to identify the
prevailing circuit topology of the distribution system. By doing
so, the adaptive protection system can identify the correct
protection settings corresponding to the estimated circuit
topology. The proposed approach is verified on IEEE 123 node
test system.

The rest of the paper is organized as follows: Section II
discusses the proposed circuit topology estimation algorithm
along with the preliminaries of LR and SVM. In Section III, the
effectiveness of the proposed circuit topology estimation is
performed on IEEE 123 bus test system. Section IV concludes
the paper.

1. MACHINE LEARNING FOR CIRCUIT TOPOLOGY
ESTIMATION

Herein, the goal is to train a machine learning engine that
estimates circuit topology with minimum information from the
system. It is assumed that the machine learning engine only has
access to data of a few of the protection relays or tie breakers.
The data received from the protection relays and tie breakers
including voltage, current, and active and reactive power are the
inputs to the machine learning engine. The prevailing circuit
topology is considered as the output of the machine learning
engine. The number of circuit topologies depends on the
number of tie lines and the utility practice. For example, in
some utilities, it is preferred to only have radial branches and
the formation of mesh loops is prohibited. The block diagram
of the proposed circuit estimation method is shown in Fig. 1.
In this paper, the circuit topology estimation is defined as a
classification learning problem. To this end, two different
classification algorithms, namely, LR and SVM are used. In the
following, these two algorithms are discussed in detail.
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Fig. 1. Proposed circuit topology estimation block diagram.

A. Logistic Regression

LR is a linear classifier. The simplest LR case is known as
binary classification where the output is typically a Boolean
value. However, LR can have multiple output values, known as
multiclass logistic regression (MLR). The output labels must be
finite and known in advance. For example, to classify four kinds
of circuit topologies, given some measurement features, the

possible outputs are four classes, namely, c;, ¢2, ¢3, and c4. MLR
in the one-vs-rest setup breaks it down into four simpler
problems where each problem considers a single class as
positive examples and all other classes as negative examples.
For all four problems, it is possible to use a binary classifier,
such as LR, with the following output: The first classifier’s
output is denoted as P(y=c;|x), while the second, third and
fourth outputs are P(y= c:|x), P(y= cs3lx) and P(y= c4x),
respectively, and the most likely class is chosen as the model’s
recommendation [16].
B. Support Vector Machine

The main goal of SVM is to identify an optimal hyperplane
that can separate the training data into two different categories

labeled as {l,—1} [6], [17]. Fig. 2 illustrates a classification
problem with SVM. A linear hyperplane can be written as
yX)=w'x+b (1)
where X is the vector of input data. The N input vectors

X,,...,X, and their corresponding output targets f,,...,, ,

where ¢, € {—1,1}, construct the training set. An illustrative
example is given in Fig. 2 where, #, =1 stands for red dots and

t,=—1 is for blue dots. y(X) denotes the target values

generated for the data input X that is excluded from the
training set. As seen in Fig. 2, the red and blue dots located

between W' X+b=1 and w x+b=—1 margins can make
the classification problem more challenging. To tackle this

challenge, slack variables, & >0 and £ <0 are utilized to.

The slack variables are chosen as follows:

e For a red dot located on the w'x+b =1 margin, é"n =0;

e For a red dot between W Xx+b=0 and W'x+b=1
margins, 0< & <1;

~1.

For a red dot between W' X+b=0 and W' x+b=—1

margins, & > 1.

e For a red dot located on the W' X+b =0 margin, &

n

Similarly, slack variables can be defined for the blue dots. In
summary, the slack variable can be formulated as

gn = tn_y(xn) :
An SVM classifier tends to maximize the region between

two W X+b=—1 and W' X+b=1 margins. The
misclassified points are handled through the slack variables.
SVM’s objective function can be defined as

N
Y6, + Wl o
n=l

where C > 0 provides a trade-off between the slack variables
impact and size of separating region. The Lagrangian is
formulated as
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Fig. 2. SVM classification.
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where @, 20 and g, >0 are the Lagrange multipliers. By
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n=1

separately calculating the first derivative of (3) with respect to
W, b, and &, and making the results equal to zero one will

have
W= Zan X, 4

N
at =0 (5)
:1;] =C—u, (6)

Using (4), (5) and (6), the Lagrangian equation is reformulated
as

L(a)= Za ——ZZanamtntmxn X, (7)

nlml

N
With 0<a, <C and Y a,t, =0.
n=1

The training points along with @, form the support vectors. The

optimal b is

h=—o Z (r -3 amtmxmxn) ()

M neM meS
where M denotes data points inside the margin hyperplanes ,
O<a,<C,and S is the set of support vectors.

If the training data is not linearly separable, one can
transform he data into a higher dimensional space using a
nonlinear function @(X). Since the inner product of @¢(X) ina
higher dimensional space can be a computationally heavy
calculation, one can use a kernel function to efficiently

calculate the inner product in the original data space. The
common kernels used for SVM classifiers are linear,

polynomial, and radial basis functions (RBF) kernels. In this
paper, linear and RBF kernels are used. RBF is formulated as

x|

—_— 9
257 ) )

where o is a tunable hyperparameter for the standard
deviation. A kernel function can be represented as

k(x,x) = 4(0)" ¢(x) (10)

Using the kernel function, (7) can be reformulated as

k(x,x ) =exp(—

L(a)= Za ——ZZanamtt k(x,,X,) (11)

nlml

Similarly, one can find @, that with the training points form the

support vectors. Moreover, the optimal b is

b——Z(i—Zath X )j (12)

M neM meS
where M is the set of data points inside the margin
hyperplanes,0 < a, <C,and S is the set of support vectors.

Once the SVM optimization problem is solved, the optimal
SVM decision function can be formulated as

y(x) = Slgn(Za t, k X X )+b) (13)

C. Evaluation of Learning Algorithms

Precision and recall are two scorer objects that can evaluate
a model’s performance. Precision is the ratio of true positives
(TP), divided by the sum of TP and false positives (FP). The
precision is intuitively the ability of the classifier not to label as
a sample as positive that is negative [17]-[18]. The precision
formula is the following:

TP
(TP+FP)

Recall is the ratio of TP, divided by the sum of TP and false
negatives (FN). It measures the ability of the classifier to find
all the positive samples. The formula for recall is:

recall = 1P (15)
- (TP+FN)

Python with Scikit-learn library [16] is chosen to create the
proposed circuit topology estimation algorithm. Scikit-learn
includes various classification, regression, and clustering
algorithms, as well as evaluation models. In this paper, F1 score
is utilized. F1 score is interpreted as a weighted average of the
precision and recall scorer objects. The F1 score is calculated
using

Flo0 x| Precisionx recall 16)
precision + recall

precision =

(14)
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Fig. 3. IEEE 123 bus test system.

III. SIMULATION RESULTS

To evaluate the proposed method, a modified IEEE 123-bus
test system is used. This circuit is shown in Fig. 3. The system
has been modified by adding multiple relays with four tie-lines.
This circuit allows the analysis of different circuit topologies
for the adaptive protection system. The list of possible
configurations is shown in Table I. These topologies are
extracted based on the status of the tie breakers TL1, TL2, TL3,
and TL4.

Table I. List of Topologies in IEEE 123 bus test system.

Configuration TL1 TL2 TL3 TL4
1 Close Open Close Close
2 Close Close Open Close
3 Close Close Close Open
4 Open Close Close Close

Each configuration has 105120 data samples, to resemble a
full year of data, distributed into five-minute intervals. The data
is gathered by simulating the system in OpenDSS. The data set
is first standardized and equally split into testing and training
data. The data from the first 6-month of the year is used for
training, while the data of the second 6-month is used for
testing. The data was then modeled by two classifiers, LR and
SVM. For SVM, linear and RBF kernels are utilized. The kernel
functions were defined based on the scikit learn Python library

9% I 94 I 92 90 I 88 I @ss
95 l
93 91 89 87

82 83

[16]. It is assumed that the adaptive protection system has only
access to a limited number of relays and identifies the circuit
configuration using the available information. At each relay, the
local voltage, current, and active and reactive powers are
measured and transmitted to the adaptive protection system.
The performance of ML algorithms is verified using the
following test cases: In Case A, the data received from the
relays is noiseless. In Case Al, it is assumed that adaptive
protection system has access to the data of relays R2, R4, and
R6. In Case A2, it is assumed that the adaptive protection
system has access to the data of relays R4 and R6. However, in
Case A3, the adaptiv e protection system only has access to the
data of relay R6. In Case B, a 3% noise level is applied to the
measurements. The noise is modeled using a Gaussian
distribution function. In Case B1, it is assumed that the adaptive
protection system has access to the data of relays R2, R4, and
R6. In Case B2, it is assumed that the adaptive protection
system has access to the data of relays R4 and R6. However, in
Case B3, the adaptive protection system only has access to the
data of relay R6. In Case C, a 5% noise level is applied to the
measurements. The noise is modeled using a Gaussian
distribution function. In Case C1, it is assumed that the adaptive
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Fig. 4. Confusion matrices for Case Al, A2, and A3.
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Fig. 5. Confusion matrices for Case B1, B2, and B3.
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Fig. 6. Confusion matrices for Case C1, C2, and C3.

protection system has access to the data of relays R2, R4, and
R6. In Case C2, it is assumed that the adaptive protection
system has access to the data of relays R4 and R6. However, in
Case C3, the adaptive protection system only has access to the
data of relay R6. Note that revenue-grade meters are generally
calibrated to be accurate within 0.5%, so this study includes
analyzing up to a fairly substantial level of measurement noise.

The F1 scores for all cases with different learning
algorithms and Kernel functions are shown in Tables II to IV.
The F1 scores in the below tables show that the circuit topology
estimation algorithm has better accuracy when it has
information access to more relays. Moreover, noise on data
slightly impacts the performance of learning algorithms.
Among the machine learning techniques, SVM with a linear
kernel renders relatively higher accuracy. The confusion

matrices for Cases Al, A2, and A3 using SVM with linear
kernel function are shown in Fig. 4. The confusion matrices for
Cases B1, B2, and B3 using SVM with linear kernel function
are shown in Fig. 5. The confusion matrices for Cases C1, C2,

and C3 using SVM with linear kernel function are shown in Fig.
6.
Table II. F1 scores for Case Al, A2, and A3.

Case Al
LR SVM with RBF SVM with Linear Kernel
0.999 0.999 1.0
Case A2
LR SVM with Linear Kernel SVM with RBF
0.999 0.999 1.0
Case A3
LR SVM with Linear Kernel SVM with RBF
0.990 0.997 0.996




Table III. F1 scores for Case B1, B2, and B3.

Case B1
LR SVM with RBF SVM with Linear Kernel
0.999 0.999 1.0
Case B2
LR SVM with Linear Kernel SVM with RBF
0.999 0.999 1.0
Case B3
LR SVM with Linear Kernel SVM with RBF
0.989 0.997 0.995

Table IV. F1 scores for Case C1, C2, and C3.

Case C1
LR SVM with RBF SVM with Linear Kernel
0.999 0.999 1.0
Case C2
LR SVM with Linear Kernel SVM with RBF
0.999 0.999 1.0
Case C3
LR SVM with Linear Kernel SVM with RBF
0.987 0.996 0.993

IV. CONCLUSIONS

This paper introduces an ML-based circuit topology
estimation to be used for adaptive protection systems. An
adaptive protection system relies on the communication system
infrastructure to identify the latest status of the power grid (e.g.,
circuit topology or generation level of distributed energy
resources). However, when the communication links are
outaged due to physical damages or cyberattacks, the adaptive
protection system may lose its awareness of the status of the
system. Therefore, it is of paramount value to estimate the
circuit status using the available healthy communicated data.
The developed circuit topology estimation technique was
verified on IEEE 123 bus test system. The case studies show
that the proposed technique has a high accuracy for classifying
the prevailing circuit topology. Among the utilized machine
learning algorithms, SVM with a linear kernel function renders
the best score. It is also shown that the impact of measurement
noises on the accuracy of the proposed technique is minimal.
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