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Abstract—Modern distribution systems can accommodate 

different topologies through controllable tie lines for increasing 

the reliability of the system. Estimating the prevailing circuit 

topology or configuration is of particular importance at the 

substation for different applications to properly operate and 

control the distribution system. One of the applications of circuit 

configuration estimation is adaptive protection. An adaptive 

protection system relies on the communication system 

infrastructure to identify the latest status of power. However, 

when the communication links to some of the equipment are 

outaged, the adaptive protection system may lose its awareness 

over the status of the system. Therefore, it is necessary to estimate 

the circuit status using the available healthy communicated data. 

This paper proposes the use of machine learning algorithms at the 

substation to estimate circuit configuration when the 

communication to the tie breakers is compromised. Doing so, the 

adaptive protection system can identify the correct protection 

settings corresponding to the estimated circuit topology. The 

effectiveness of the proposed approach is verified on IEEE 123 bus 

test system. 

Index Terms—Adaptive protection, circuit configuration 

estimation, distribution system, machine learning. 

I. INTRODUCTION 

Modern distribution systems (DS) can accommodate 

different circuit topologies for increasing the reliability of 

distribution systems. To this end, tie lines are installed at 

different locations of distribution circuits to provide an 

alternative source of power to the congested branches or 

branches hosting critical loads [1]-[2]. Each tie line has a 

breaker that can be controlled remotely from the DS control 

center to change the DS circuit topology. Estimating the 

prevailing circuit topology at the DS substation is of particular 

importance for different DS applications when the 

communication of the substation controller to the tie breakers 

is outaged or compromised due to cyber-attacks. One of the 

applications for which proper circuit topology estimation is 

critical is adaptive protection of distribution systems. An 

adaptive protection system is defined as a system that is 

responsive to the changes in the power system, e.g., its topology 

and generation profile, and can update protection relays’ 

settings in real-time through the DS communication network 

[1]-[5]. An adaptive protection system highly relies on the 

communication network to identify the latest status of DS (e.g., 

circuit topology). However, when the communication links to 

some of the tie breakers are outaged due to physical damages 

or cyberattacks, the adaptive protection system fails to identify 

the prevailing circuit topology for calculating proper settings 

for the DS protection relays. Therefore, it is of paramount value 

to estimate the circuit topology using the available healthy 

communicated data [6]. The proposed algorithm uses the 

available measurements from the relays that still have 

communication to estimate the state of the other switches with 

lost communication.  After topology estimation is performed, 

the adaptive protection system will use the topology to 

determine the appropriate protection settings for the relays. 

In the literature, state estimation has been used as the 

common approach for circuit topology estimation in DS [7]. In 

[8], a weighted least square state estimator is utilized to identify 

the status of circuit breakers by accounting for their active and 

reactive power flow. A state estimation technique for topology 

processing and estimation is proposed in [9]. In [10], Bayesian 

estimation is introduced as a linear least square estimation 

problem for improving the performance of weighted least 

square state estimators that require extended number of sensors. 

Alternatively, data-driven and learning-based state estimation 

techniques have been proposed in [11]-[15] to improve the 

performance of conventional state estimation methods.  

In this paper, the objective is to estimate the circuit topology 

when the adaptive protection system has limited access to a few 

of the protection relays and tie breakers in the system. Although 
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the state estimation techniques can estimate circuit topology 

effectively, they require extensive communication to different 

locations of the circuit. This paper proposes the use of machine 

learning to estimate circuit topology at the substation when the 

communication links to the tie breakers are outaged. The 

proposed approach utilizes a support vector machine (SVM) 

and logistic regression (LR) as classifiers to identify the 

prevailing circuit topology of the distribution system. By doing 

so, the adaptive protection system can identify the correct 

protection settings corresponding to the estimated circuit 

topology. The proposed approach is verified on IEEE 123 node 

test system.  

 The rest of the paper is organized as follows: Section II 

discusses the proposed circuit topology estimation algorithm 

along with the preliminaries of LR and SVM. In Section III, the 

effectiveness of the proposed circuit topology estimation is 

performed on IEEE 123 bus test system. Section IV concludes 

the paper.  

II. MACHINE LEARNING FOR CIRCUIT TOPOLOGY 

ESTIMATION 

Herein, the goal is to train a machine learning engine that 

estimates circuit topology with minimum information from the 

system. It is assumed that the machine learning engine only has 

access to data of a few of the protection relays or tie breakers. 

The data received from the protection relays and tie breakers 

including voltage, current, and active and reactive power are the 

inputs to the machine learning engine. The prevailing circuit 

topology is considered as the output of the machine learning 

engine. The number of circuit topologies depends on the 

number of tie lines and the utility practice. For example, in 

some utilities, it is preferred to only have radial branches and 

the formation of mesh loops is prohibited. The block diagram 

of the proposed circuit estimation method is shown in Fig. 1.  

In this paper, the circuit topology estimation is defined as a 

classification learning problem. To this end, two different 

classification algorithms, namely, LR and SVM are used. In the 

following, these two algorithms are discussed in detail.   
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Fig. 1. Proposed circuit topology estimation block diagram. 

A. Logistic Regression 

LR is a linear classifier. The simplest LR case is known as 

binary classification where the output is typically a Boolean 

value. However, LR can have multiple output values, known as 

multiclass logistic regression (MLR). The output labels must be 

finite and known in advance. For example, to classify four kinds 

of circuit topologies, given some measurement features, the 

possible outputs are four classes, namely, c1, c2, c3, and c4. MLR 

in the one-vs-rest setup breaks it down into four simpler 

problems where each problem considers a single class as 

positive examples and all other classes as negative examples.  

For all four problems, it is possible to use a binary classifier, 

such as LR, with the following output: The first classifier’s 

output is denoted as 𝑃(𝑦=𝑐1|𝑥), while the second, third and 

fourth outputs are 𝑃(𝑦= 𝑐2|𝑥), 𝑃(𝑦= 𝑐3|𝑥) and 𝑃(𝑦= 𝑐4|𝑥), 

respectively, and the most likely class is chosen as the model’s 

recommendation [16]. 

B. Support Vector Machine 

The main goal of SVM is to identify an optimal hyperplane 

that can separate the training data into two different categories 

labeled as {1, 1}− [6], [17]. Fig. 2 illustrates a classification 

problem with SVM. A linear hyperplane can be written as 
T( )y b= +x w x  (1) 

where x  is the vector of input data. The N  input vectors 

1,..., Nx x  and their corresponding output targets 1,..., Nt t  , 

where { 1,1}nt  − , construct the training set. An illustrative 

example is given in Fig. 2 where, 1nt =  stands for red dots and 

1nt = −  is for blue dots. ( )y x  denotes the target values 

generated for the data input x  that is excluded from the 

training set. As seen in Fig. 2, the red and blue dots located 

between 
T 1b+ =w x  and 

T 1b+ = −w x  margins can make 

the classification problem more challenging. To tackle this 

challenge, slack variables, 0n   and 0n   are utilized to. 

The slack variables are chosen as follows:  

• For a red dot located on the 
T 1b+ =w x  margin, 0n = ; 

• For a red dot between 
T 0b+ =w x  and 

T 1b+ =w x  

margins, 0 1
n
  ;  

• For a red dot located on the 
T 0b+ =w x  margin, 1n = ; 

For a red dot between 
T 0b+ =w x  and 

T 1b+ = −w x  

margins, 1n  .  

Similarly, slack variables can be defined for the blue dots. In 

summary, the slack variable can be formulated as 

( )n n nt y x = − .  

An SVM classifier tends to maximize the region between 

two  
T 1b+ = −w x  and 

T 1b+ =w x  margins. The 

misclassified points are handled through the slack variables. 

SVM’s objective function can be defined as 

2
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1

2

N

n

n

C 
=

+ w‖ ‖  (2) 

where 0C   provides a trade-off between the slack variables 

impact and size of separating region. The Lagrangian is 

formulated as  



 
Fig. 2. SVM classification. 
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where 0na   and  0n   are the Lagrange multipliers. By 

separately calculating the first derivative of (3) with respect to 

w , b, and n  and making the results equal to zero one will 

have 

1

N

n n n

n

a t
=

=w x   (4) 

1

0
N

n n

n

a t
=

=   (5) 

n na C = −   (6) 

Using (4), (5) and (6), the Lagrangian equation is reformulated 

as 

1 1 1

1
( )

2

N N N

n n m n m n m

n n m
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= − a x x  (7) 

With 0 na C   and 

1

0
N

n n

n

a t
=

= . 

The training points along with ia  form the support vectors. The 

optimal b  is 

1
n m m m n

n m

b t a t
N  

 
= − 

 
  x x  (8) 

where  denotes data points inside the margin hyperplanes , 

0 na C  , and  is the set of support vectors. 

If the training data is not linearly separable, one can 

transform he data into a higher dimensional space using a 

nonlinear function ( ) x . Since the inner product of ( ) x  in a 

higher dimensional space can be a computationally heavy 

calculation, one can use a kernel function to efficiently 

calculate the inner product in the original data space. The 

common kernels used for SVM classifiers are linear, 

polynomial, and radial basis functions (RBF) kernels. In this 

paper, linear and RBF kernels are used. RBF is formulated as 
2

2
( , ) exp( )

2
k




−

= −
x x

x x


 (9) 

where   is a tunable hyperparameter for the standard 

deviation. A kernel function can be represented as  

( )T( , ) ( )k   =x x x x  (10) 

Using the kernel function, (7) can be reformulated as 
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Similarly, one can find ia  that with the training points form the 

support vectors. Moreover, the optimal b  is   

( )
1

,n m m n m

n m

b t a t k
N  

 
= − 

 
  x x  (12) 

where  is the set of data points inside the margin 

hyperplanes, 0 na C  , and  is the set of support vectors. 

Once the SVM optimization problem is solved, the optimal 

SVM decision function can be formulated as  

( )
1

( ) ( , )
N

n n n

n

y sign a t k b
=

= +x x x  (13) 

C. Evaluation of Learning Algorithms 

Precision and recall are two scorer objects that can evaluate 

a model’s performance. Precision is the ratio of true positives 

(TP), divided by the sum of TP and false positives (FP). The 

precision is intuitively the ability of the classifier not to label as 

a sample as positive that is negative [17]-[18]. The precision 

formula is the following:  

( )
TP

precision
TP FP

=
+

 (14) 

Recall is the ratio of TP, divided by the sum of TP and false 

negatives (FN). It measures the ability of the classifier to find 

all the positive samples. The formula for recall is: 

( )
TP

recall
TP FN

=
+

 (15) 

Python with Scikit-learn library [16] is chosen to create the 

proposed circuit topology estimation algorithm. Scikit-learn 

includes various classification, regression, and clustering 

algorithms, as well as evaluation models. In this paper, F1 score 

is utilized. F1 score is interpreted as a weighted average of the 

precision and recall scorer objects. The F1 score is calculated 

using 

1 2
precision recall

F
precision recall

 
=  

+ 
 (16) 



 

III. SIMULATION RESULTS 

To evaluate the proposed method, a modified IEEE 123-bus 

test system is used. This circuit is shown in Fig. 3.  The system 

has been modified by adding multiple relays with four tie-lines. 

This circuit allows the analysis of different circuit topologies 

for the adaptive protection system. The list of possible 

configurations is shown in Table I. These topologies are 

extracted based on the status of the tie breakers TL1, TL2, TL3, 

and TL4. 

 
Table I. List of Topologies in IEEE 123 bus test system. 

Configuration TL1 TL2 TL3 TL4 
1 Close Open Close Close 

2 Close Close Open Close 

3 Close Close Close Open 

4 Open Close Close Close 

 

Each configuration has 105120 data samples, to resemble a 

full year of data, distributed into five-minute intervals. The data 

is gathered by simulating the system in OpenDSS. The data set 

is first standardized and equally split into testing and training 

data. The data from the first 6-month of the year is used for 

training, while the data of the second 6-month is used for 

testing. The data was then modeled by two classifiers, LR and 

SVM. For SVM, linear and RBF kernels are utilized. The kernel 

functions were defined based on the scikit learn Python library 

[16]. It is assumed that the adaptive protection system has only 

access to a limited number of relays and identifies the circuit 

configuration using the available information. At each relay, the 

local voltage, current, and active and reactive powers are 

measured and transmitted to the adaptive protection system.  

The performance of ML algorithms is verified using the 

following test cases: In Case A, the data received from the 

relays is noiseless. In Case A1, it is assumed that adaptive 

protection system has access to the data of relays R2, R4, and 

R6. In Case A2, it is assumed that the adaptive protection 

system has access to the data of relays R4 and R6. However, in 

Case A3, the adaptiv e protection system only has access to the 

data of relay R6.  In Case B, a 3% noise level is applied to the 

measurements. The noise is modeled using a Gaussian 

distribution function. In Case B1, it is assumed that the adaptive 

protection system has access to the data of relays R2, R4, and 

R6. In Case B2, it is assumed that the adaptive protection 

system has access to the data of relays R4 and R6. However, in 

Case B3, the adaptive protection system only has access to the 

data of relay R6. In Case C, a 5% noise level is applied to the 

measurements. The noise is modeled using a Gaussian 

distribution function. In Case C1, it is assumed that the adaptive 

 
Fig. 3. IEEE 123 bus test system. 
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protection system has access to the data of relays R2, R4, and 

R6. In Case C2, it is assumed that the adaptive protection 

system has access to the data of relays R4 and R6. However, in 

Case C3, the adaptive protection system only has access to the 

data of relay R6.  Note that revenue-grade meters are generally 

calibrated to be accurate within 0.5%, so this study includes 

analyzing up to a fairly substantial level of measurement noise. 

The F1 scores for all cases with different learning 

algorithms and Kernel functions are shown in Tables II to IV. 

The F1 scores in the below tables show that the circuit topology 

estimation algorithm has better accuracy when it has 

information access to more relays. Moreover, noise on data 

slightly impacts the performance of learning algorithms. 

Among the machine learning techniques, SVM with a linear 

kernel renders relatively higher accuracy. The confusion 

matrices for Cases A1, A2, and A3 using SVM with linear 

kernel function are shown in Fig. 4. The confusion matrices for 

Cases B1, B2, and B3 using SVM with linear kernel function 

are shown in Fig. 5. The confusion matrices for Cases C1, C2, 

and C3 using SVM with linear kernel function are shown in Fig. 

6. 
Table II. F1 scores for Case A1, A2, and A3. 

Case A1 

LR SVM with RBF SVM with Linear Kernel 

0.999 0.999 1.0 

Case A2 

LR SVM with Linear Kernel SVM with RBF 

0.999 0.999 1.0 

Case A3 

LR SVM with Linear Kernel SVM with RBF 

0.990 0.997 0.996 

   
(a) (b) (c) 

Fig. 4. Confusion matrices for Case A1, A2, and A3. 

 
  

(a) (b) (c) 

Fig. 5. Confusion matrices for Case B1, B2, and B3. 

 
  

(a) (b) (c) 

Fig. 6. Confusion matrices for Case C1, C2, and C3. 
 



 
Table III. F1 scores for Case B1, B2, and B3. 

Case B1 

LR SVM with RBF SVM with Linear Kernel 

0.999 0.999 1.0 

Case B2 

LR SVM with Linear Kernel SVM with RBF 

0.999 0.999 1.0 

Case B3 

LR SVM with Linear Kernel SVM with RBF 

0.989 0.997 0.995 

 
Table IV. F1 scores for Case C1, C2, and C3. 

Case C1 

LR SVM with RBF SVM with Linear Kernel 

0.999 0.999 1.0 

Case C2 

LR SVM with Linear Kernel SVM with RBF 

0.999 0.999 1.0 

Case C3 

LR SVM with Linear Kernel SVM with RBF 

0.987 0.996 0.993 

IV. CONCLUSIONS 

This paper introduces an ML-based circuit topology 

estimation to be used for adaptive protection systems. An 

adaptive protection system relies on the communication system 

infrastructure to identify the latest status of the power grid (e.g., 

circuit topology or generation level of distributed energy 

resources). However, when the communication links are 

outaged due to physical damages or cyberattacks, the adaptive 

protection system may lose its awareness of the status of the 

system. Therefore, it is of paramount value to estimate the 

circuit status using the available healthy communicated data. 

The developed circuit topology estimation technique was 

verified on IEEE 123 bus test system. The case studies show 

that the proposed technique has a high accuracy for classifying 

the prevailing circuit topology. Among the utilized machine 

learning algorithms, SVM with a linear kernel function renders 

the best score. It is also shown that the impact of measurement 

noises on the accuracy of the proposed technique is minimal. 
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