

Smoothed Aggregation for Difficult Stretched Mesh and Coefficient Variation Problems

Ray Tuminaro
Center for Computing Research
Sandia National Laboratories

J. Hu @ Sandia, C. Siefert@ Sandia

Apr., 2022

4 smoothed aggregation adaptations

Talk centers on

- Alternative definition of matrix diagonal within prolongator smoother
- Alternative definition of filtered matrix within prolongator smoother
- Modification/post-process of interpolation operator
- ~~Modification/post-process of strength of connection algorithm~~

+

Numerical Results

Smoothed Aggregation (SA-AMG) review

Solve $A_1 u_1 = f_1$ via

$\text{Vcycle}(A_l, f_l, u_l, l)$

if $l \neq N_{level}$ {

$$u_l = \hat{S}_l(A_l, f_l, u_l)$$

$$f_{l+1} = P_l^T(f_l - A_l u_l)$$

$\text{Vcycle}(A_{l+1}, f_{l+1}, 0, l + 1)$

$$u_l = u_l + P_l u_{l+1}$$

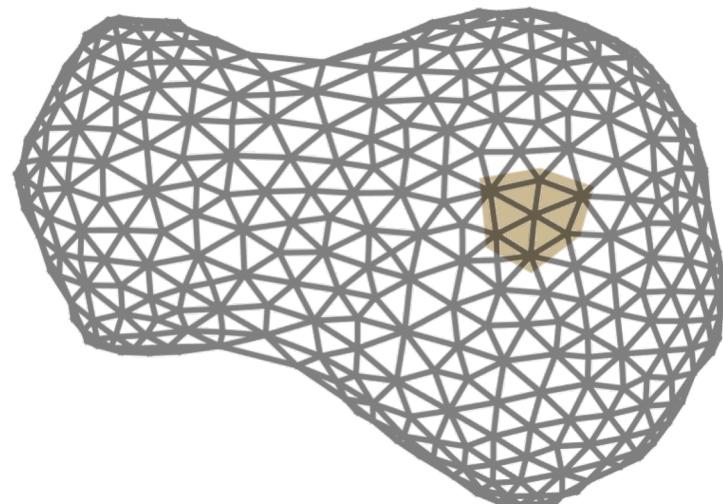
}

else $u_l = A_l^{-1} f_l$

$$P_l = (I - \omega \bar{D}_l^{-1} \bar{A}_l) P_l^{(t)}$$

\bar{A}_l is *filtered* A_l , D_l is diag \bar{A}_l

$P_l^{(t)}$ is piecewise constant
tentative prolongator. Each
column corresponds to 1
aggregate



$$A_{l+1} = P_l^T A_l P_l$$

$\hat{S}_l()$ is relaxation or smoother

SA-AMG Details

$$P_l = (I - \omega \bar{D}_l^{-1} \bar{A}_l) P_l^{(t)}$$

\bar{A}_l is *filtered* A_l , \bar{D}_l is $\text{diag}(\bar{A}_l)$

$$(\bar{A}_\ell)_{ij} = \begin{cases} (A_\ell)_{ij} & \text{if } i \neq j \text{ and } j \in \mathcal{S}_{\ell,i} \\ (A_\ell)_{ii} + \sum_{k \in \mathcal{W}_{\ell,i}} (A_\ell)_{ik} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Weak Connections (Strong Connections)

Strong connections *usually* satisfy

$$|(A_\ell)_{ij}| \geq \theta \sqrt{(A_\ell)_{ii} (A_\ell)_{jj}}$$

threshold

$$\omega = \frac{4}{3 \rho(\bar{D}_l^{-1} \bar{A}_l)}$$

spectral radius

$P_l^{(t)}$ is piecewise constant tentative prolongator

Four algorithm adaptations

- Alternative definition of \bar{D}_l
- Alternative definition of \bar{A}_l using standard S_l
- Modification/post-process of P_l
- ~~Modification/post process of S_l~~

Sometimes these modifications have no positive or negative impact, but ...

- ❖ sometimes quite helpful
- ❖ almost never detrimental*

\widetilde{D}_l : an alternative to \bar{D}_l

Motivation

$$P_l = (I - \omega \bar{D}_l^{-1} \bar{A}_l) P_l^{(t)} \quad \omega = \frac{4}{3 \rho(\bar{D}_l^{-1} \bar{A}_l)}$$

Notice

- small $\omega \Rightarrow P_l \approx P_l^{(t)}$, which is suboptimal
- $\rho(\bar{D}_l^{-1} \bar{A}_l)$ may be *large* if just one entry of \bar{D}_l is relatively *small*
- dropping lowers diagonal entry

$$(\bar{A}_\ell)_{ii} = (A_\ell)_{ii} + \sum_{k \in \mathcal{W}_{\ell,i}} (A_\ell)_{ik}$$

when dropped $(A_\ell)_{ik} < 0$

$(\bar{A}_l)_{ii} < 0$ possible, e.g. 3D linear FE on cube with $1 \times 1 \times h_z$ elements for $h_z > \sqrt{7}/2$, dropping all but largest off-diagonal

\tilde{D}_l : 1-norm approximation

Define

$$\gamma_{i,l} = \sum_j |(\bar{A}_l)_{ij}|, \quad s_{i,l} = \sum_j (\bar{A}_l)_{ij}$$

then

$$(\tilde{D}_l)_{ii} = \begin{cases} \gamma_{i,l} & \text{if } \gamma_{i,l} \geq 2s_{i,l} \\ 1 & \text{if } \gamma_{i,l} \equiv 0 \\ 2s_{i,l} & \text{otherwise} \end{cases}$$

safeguards

Middle case corresponds to identically 0 row.

Last case enforces that

$$(P_l)_{ij} \geq 1/3$$

when i is the center of an ideal j th aggregate, which would correspond to the aggregate's basis function peak.

Note: $\rho(\tilde{D}_l^{-1}\bar{A}_l) \leq 1$

\tilde{A} : an alternative to \bar{A} for diffusion operators*

Recall

$$\bar{A}_{ij} = \begin{cases} A_{ij} & \text{if } i \neq j \text{ and } j \in \mathcal{S}_i \\ A_{ii} + \sum_{k \in \mathcal{W}_i} A_{ik} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

which might lead to negative or small diagonal entries ... or more generally

$$\mathcal{D}(\bar{A}_i) \gg \mathcal{D}(A_i) \quad \text{where} \quad \mathcal{D}(A_i) = \frac{\sum_{j \neq i} |A_{ij}|}{|A_{ii}|}$$

Consider instead lumping that maintains row sums by modifying either

- retained positive off-diagonal entries
- diagonal entry
- retained negative entries

*in this order
of preference*

to enforce $\mathcal{D}(\bar{A}_i) \leq \tau \mathcal{D}(A_i)$

* Dropping l subscript for remainder of presentation

Detailed lumping algorithm

$\bar{A}_i = \text{Lump_AvoidSmallDiag}(A_i, \mathcal{R}_i, \tau)$

Input:

- A_i i^{th} row of matrix with entries to be dropped
- \mathcal{R}_i set of column indices in i^{th} row to be removed
- τ tolerance indicating that $\mathcal{D}(\bar{A}_i)$ should not exceed $\tau \mathcal{D}(A_i)$

Output:

- \bar{A}_i matrix row where $\bar{A}_{ij} = 0$ for $j \in \mathcal{R}_i$ and $\bar{A}_i v = A v$ where v is a constant vector

1. Let $r_i \leftarrow \sum_{k \in \mathcal{R}_i} A_{ik}$
2. **if** $r_i > 0$ **then** $\bar{A}_{ii} \leftarrow A_{ii} + r_i$ // decreases $\mathcal{D}(\bar{A}_i)$
3. **else** {
 4. Let $\mathcal{K}_i^+ \leftarrow \{k \mid A_{ik} > 0 \wedge k \neq i \wedge k \notin \mathcal{R}_i\}$
 5. Let $\mathcal{K}_i^- \leftarrow \{k \mid A_{ik} < 0 \wedge k \neq i \wedge k \notin \mathcal{R}_i\}$
 6. Let $\kappa_i^+ \leftarrow \sum_{k \in \mathcal{K}_i^+} A_{ik}$; $\kappa_i^- \leftarrow \sum_{k \in \mathcal{K}_i^-} A_{ik}$;
 7. **if** $|r_i| \leq \kappa_i^+$ **then** $\bar{A}_{ij} \leftarrow A_{ij}(1 + \delta_i)$ for $j \in \mathcal{K}_i^+$ where $\delta_i \leftarrow r_i / \kappa^+$
 8. **else** {
 9. $\bar{A}_{ij} \leftarrow 0$ for $j \in \mathcal{K}_i^+$ // zero out the \mathcal{K}_i^+ by distributing a
 10. $\hat{r}_i \leftarrow r_i + \kappa_i^+$ // portion of r_i ($= \kappa_i^+$) to them
 11. **if** $\mathcal{K}_i^- = \emptyset$ **then** redistribute to \mathcal{K}^+ if possible or if not

possible do not modify row i and return
 12. **else** {
 13. find largest positive $r_i^* < \min(d_{ii}, |\hat{r}_i|)$ such that $\mathcal{D}(\bar{A}_i) \leq \tau \mathcal{D}(A_i)$
 14. define \bar{A}_i such that its only nonzero values are
 15. $\bar{A}_{ii} \leftarrow A_{ii} - r_i^*$
 16. $\bar{A}_{ij} \leftarrow A_{ij}(1 + \delta_i)$ for $i \in \mathcal{K}_i^-$
 17. where $\delta_i \leftarrow (\hat{r}_i + r_i^*) / \kappa^-$
 18. }
 19. }
 20. }
 21. }

\tilde{P} : post-process P

Force $0 \leq \tilde{P}_{ij} \leq 1$

via

$$\begin{cases} \tilde{P}_i = \arg \min_{\hat{P}_i} \|\hat{P}_i - P_i\|_2 \\ \text{subject to } \hat{P}_{ij} = 0 \text{ if } P_{ij} = 0, \quad \hat{P}_{ij} \geq 0, \quad \hat{P}_{ij} \leq 1, \quad \hat{P}_i v = P_i v \end{cases}$$

where \tilde{P}_i is i^{th} row of \tilde{P} & v is vector of all ones.

Solved by 2-step process when feasible solution exists

- shift all nonzero \tilde{P}_{ij} in i^{th} row by δ_i
- enforce all bounds

Must determine δ_i to maintain $\tilde{P}_i v = P_i v$ when bounds enforced.

Done by assuming a minimal set of bound-violating entries, determining δ_i for this set. Add one entry to set if shift causes more bound-violating entries, repeat δ_i and so on.

\tilde{P} : post-process P

Algorithm 3 Constrain_One_P_Row(\tilde{P}_i , lowerBound, upperBound)

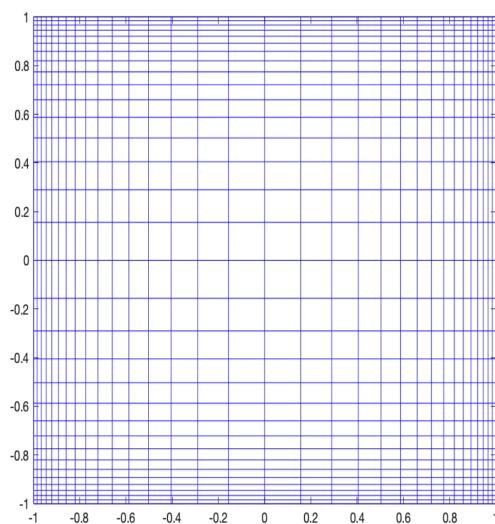
```
optimal ← false
k ← 0
 $\ell_k \leftarrow \arg \min_{\ell_k} \tilde{P}_i[\ell_k] > \text{lowerBound}$ 
 $u_k \leftarrow \arg \min_{u_k} \tilde{P}_i[u_k] > \text{upperBound}$ 
while ( optimal == false) {
     $\delta_k \leftarrow ( \sum_{j=\ell_k}^{u_k-1} \tilde{P}_i[j] - \sum_{j=1}^{\text{nnz}(\tilde{P}_i)} \tilde{P}_i[j] ) / ( u_k - \ell_k )$ 
    // does  $\tilde{P}_i[\ell_k] - \delta_k$  still satisfy lowerBound & does  $\tilde{P}_i[u_k] - \delta_k$  still violate upperBound
    if  $\delta_k < \min( \tilde{P}_i[\ell_k] - \text{lowerBound}, \tilde{P}_i[u_k] - \text{upperBound} )$  , optimal ← true
    else {
        if  $\tilde{P}_i[\ell_k] - \text{lowerBound} \leq \tilde{P}_i[u_k] - \text{upperBound}$  ,  $\ell_k \leftarrow \ell_k + 1$ 
        else  $u_k \leftarrow u_k + 1$ 
    }
    k ← k + 1
}
for  $j = 1 : \ell_k - 1$ ,  $\tilde{P}_i[j] \leftarrow \text{lowerBound}$ 
for  $j = \ell_k : u_k - 1$ ,  $\tilde{P}_i[j] \leftarrow \tilde{P}_i[j] - \delta_k$ 
for  $j = u_k : \text{nnz}(\tilde{P}_i)$ ,  $\tilde{P}_i[j] \leftarrow \text{upperBound}$ 
```

Results: Refined Boundary Mesh

BCs

$u(\text{top}) = 0$

Neumann
elsewhere

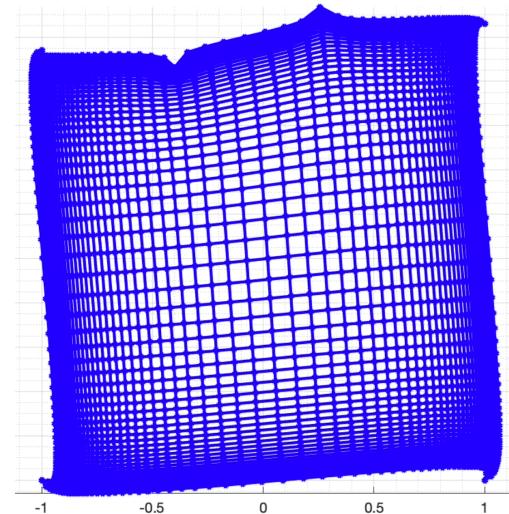


Algorithm Choice	$\theta = .05$			
	AMG complex.	its.	AMG Setup	Solve
\tilde{A}_ℓ	\tilde{P}_ℓ	1.33	19	.21 .16
	\tilde{P}_ℓ	1.33	20	.23 .18
	\tilde{P}_ℓ	1.33	15	.27 .14
\tilde{D}_ℓ	\tilde{P}_ℓ	1.33	14	.28 .12
\tilde{D}_ℓ	\tilde{P}_ℓ	1.33	14	.22 .12
\tilde{D}_ℓ	\tilde{P}_ℓ	1.33	14	.26 .12
\tilde{D}_ℓ	\tilde{A}_ℓ	1.33	14	.26 .12
\tilde{D}_ℓ	\tilde{A}_ℓ	\tilde{P}_ℓ	1.33	14 .29 .12

2D Linear Elasticity

BCs

$u(\text{top corners})$
Dirichlet x
displacements



$u(\text{bottom corners})$
Dirichlet x, y
displacements

Neumann
elsewhere

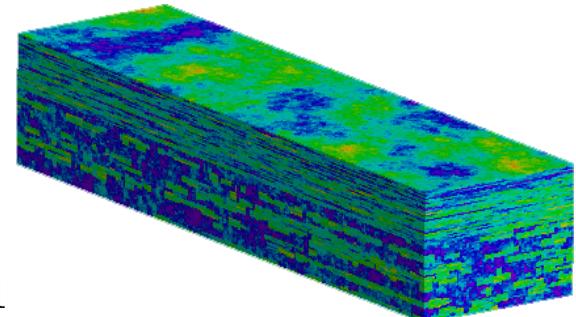
Algorithm Choice	$\theta = .05$			
	AMG complex.	its.	AMG Setup	Solve
\tilde{P}_ℓ	1.31	60	.84	2.18
	1.31	50	.89	1.66
\tilde{D}_ℓ	1.31	59	.87	2.11
	1.31	48	.90	1.56

linear FE on 256×256 quad mesh, CG residual reduced by 10^{-8} , $\tau = 1.1$ for \tilde{A}_ℓ , 4 MG levels
distance Laplacian used for strength, $p=2$ Cheby relaxation, rotations not used for elasticity

SPE10 oil/gas subsurface flow

Darcy Flow

All results use \tilde{D}_l SA-AMG did not converge without \tilde{D}_l !



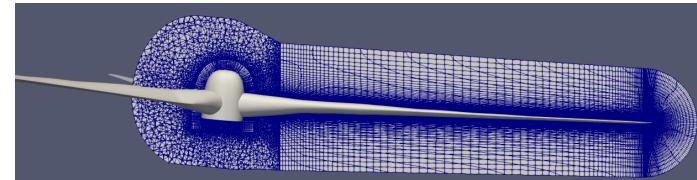
porosity
range of 10^{12}

Algorithm Choice		$\theta = .02$		$\theta = .05$		$\theta = .1$		
		AMG complex.	its.	AMG complex.	its.	AMG complex.	its.	
\tilde{D}_l		1.85	24	2.00	27	2.60	31	
\tilde{D}_l	\tilde{P}_ℓ	1.85	26	2.00	28	2.60	31	
\tilde{A}_ℓ	\tilde{D}_l	1.85	24	2.00	19	2.60	17	
\tilde{A}_ℓ	\tilde{D}_l	\tilde{P}_ℓ	1.85	22	2.00	19	2.60	16

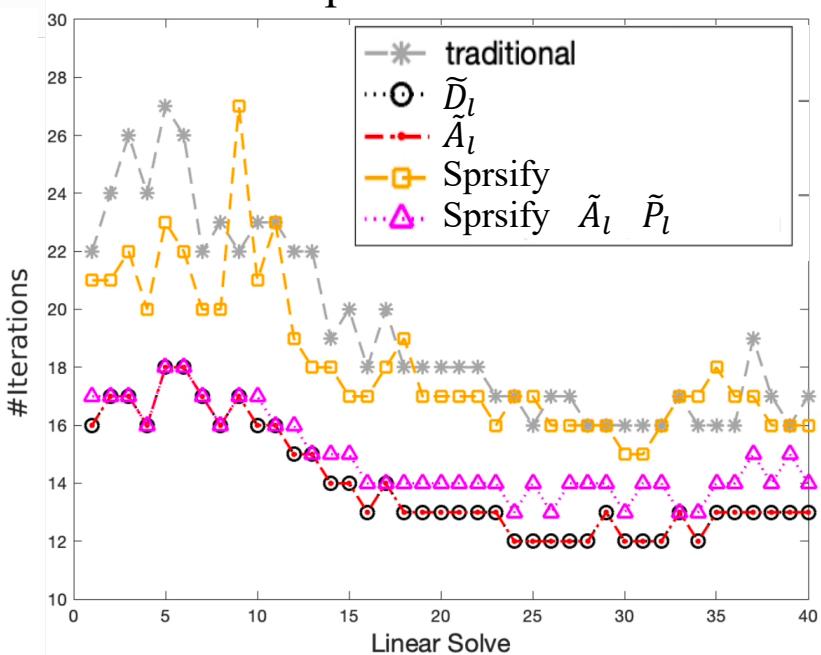
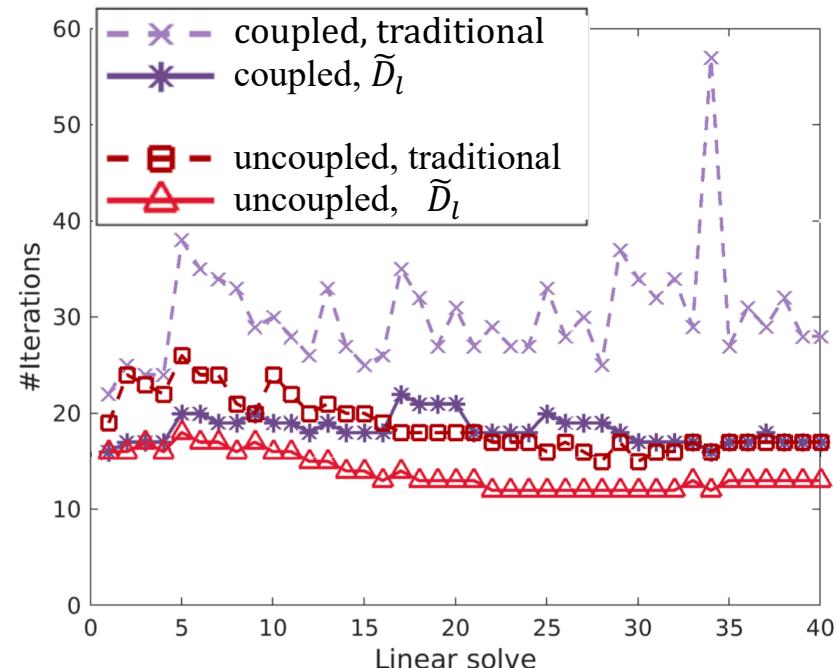
Algorithm Choice		$\theta = .02$		$\theta = .05$		$\theta = .1$		
		AMG Setup	Solve	AMG Setup	Solve	AMG Setup	Solve	
\tilde{D}_l		2.49	1.86	2.64	2.25	3.15	3.62	
\tilde{D}_l	\tilde{P}_ℓ	2.74	2.31	2.87	2.31	3.46	3.67	
\tilde{A}_ℓ	\tilde{D}_l	2.93	1.86	3.13	1.63	3.69	2.27	
\tilde{A}_ℓ	\tilde{D}_l	\tilde{P}_ℓ	3.18	1.69	3.31	1.60	3.99	2.13

finest mesh 660K dofs, CG residual reduced by 10^{-8} , $\tau = 1.1$ for \tilde{A}_ℓ , 5 MG levels, standard strength measure, p=2 Cheby relaxation

Wind Turbine



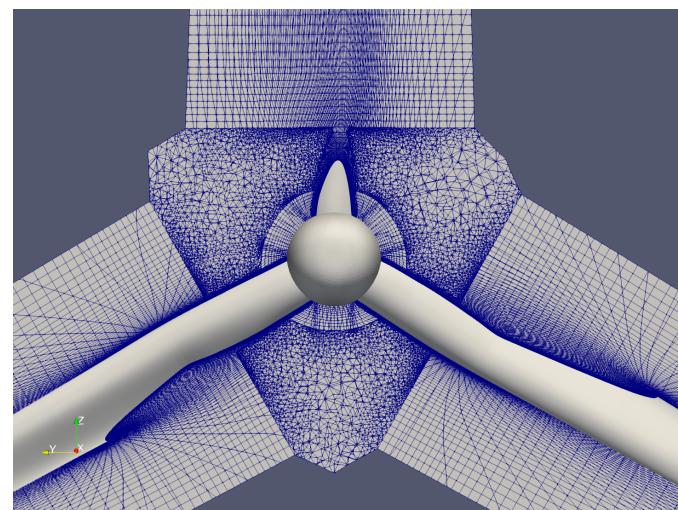
uncoupled formulation



uncoupled formulation

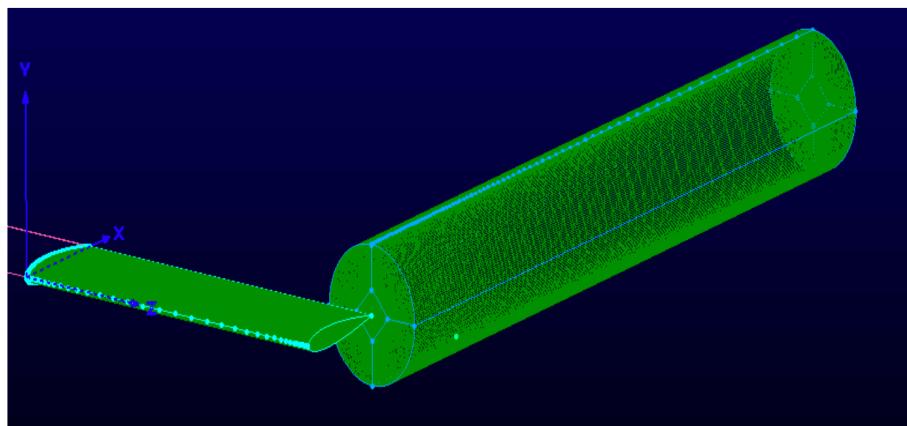
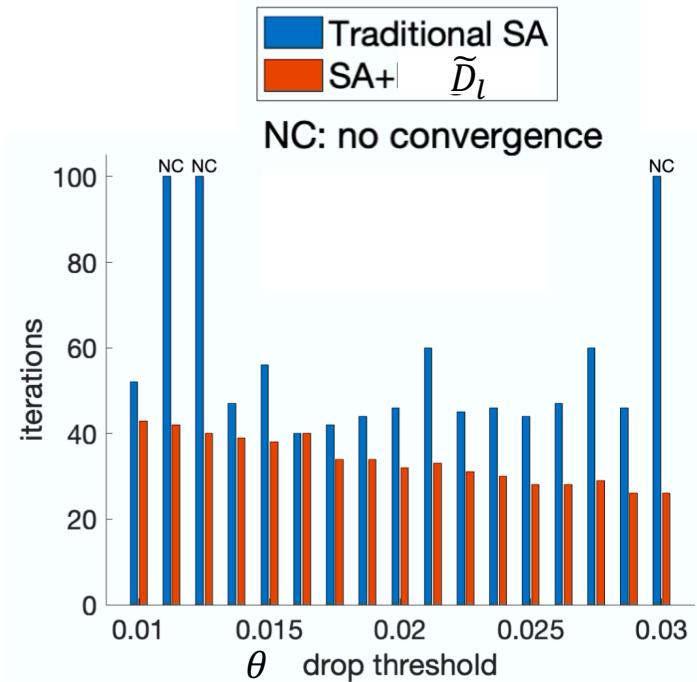
Algorithm Choice	AMG Setup	Solve	AMG Complexity
traditional	3.15	7.78	1.66
\tilde{D}_ℓ	3.52	4.41	1.65
\tilde{A}_ℓ Sprsify \tilde{P}_ℓ	5.47	3.16	1.61

finest mesh 23M dofs, GMRES residual reduced by 10^{-5} , $\tau = 1.1$ for \tilde{A}_ℓ , 5 MG levels, standard strength measure, $p=2$ Cheby relaxation, $\theta = .02$



Wind Turbine Robustness Study

coupled formulation



\widetilde{D}_l needed to avoid erratic failures that occur for traditional SA !

Concluding Remarks

- 3 SA-AMG adaptations presented
 - Alternative definition of \bar{D}_l
 - Alternative definition of \bar{A}_l using standard S_l
 - Modification/post-process of P_l
- Sometimes help improve robustness or convergence of SA-AMG, rarely hurt
 - Poisson & linear elasticity on stretched mesh
 - SPE10 benchmark
 - wind calculation

Support provided by the US Dept. of Energy, Office of Science,
Advanced Scientific Computing Research (ASCR)
Applied Mathematics program