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4 smoothed aggregation adaptations

:;,'

Talk centers on
« Alternative definition of matrix diagonal within prolongator smoother

« Alternative definition of filtered matrix within prolongator smoother

» Modification/post-process of interpolation operator

Numerical Results
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V.

Solve A, u, =1, via

chCle(Al, fl' uy, l)
if | # Nlevel {

=S54, frw)
fiv1 = P} (fi—Aw)

Veycle(A; 41, f1+1,0,1 + 1)
U =u+ Pupy

}

else u; = AT

Ay = Pl AP,
S$,() is relaxation or smoother

moothed Aggregation (SA-AMG) review

P, = (I — oD *A)PY
A,is filtered 4;, Dy is diag (4;)

Pl(t) IS piecewise constant

tentative prolongator. Each
column corresponds to 1
aggregate
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%‘ SA-AMG Details

Pp=(- wﬁflf‘il)Pl(t)
A, is filtered A;, Dy is diag( 4;)

(Af)ij if 1#7and j € Sgﬂ;
(A0),; = At T, A i i=j sy,
0 Z‘Lu otherwise ey,
C, Ak “Ony

Ony
Strong connections usuallysatisty | (4,) i > 9\/ (Ae);; (Ar)

B 4 W%zd
"~ 3p(D7 A
Pl A)

spectral radins S
pPWY s pi i tant tentati longat () .
I plecewise constant tentative proiongator Laboratories



Four algorithm adaptations

:;,'

- Alternative definition of D,

- Alternative definition of 4; using standard S,

» Modification/post-process of 7,

Merdifentioninnst :

Sometimes these modifications have no positive or negative

impact, but ...

s sometimes quite helpful
Sandia

% almost never detrimental* @ el
aboratories



D, : an alternative to D,

:;,'

Motivation

(7 _ -1 13p® . 4
Notice
‘small w= P= Pl(t) , Which is suboptimal

« p(D;1A;) may be large if just one entry of D, is relatively small

 dropping lowers diagonal entry
(Ag)ii - (AE)ZZ + ZkGWg’i (AE)'L]C
when dropped (A¢),,< 0

(A);; < 0possible, e.g. 3D linear FE on cube with 1x1xh,
elements for h, > \/7/2, dropping all but largest off-diagonal



D, : 1-norm approximation

:;,'

Define

vir = Xi|(ADii| . sii =2 (A

then
(v if v = 2sy
(El)ii = < 1 lf Vil = 0 Y~
’ safeguards
\ 25s;; otherwise <
Middle case corresponds to identically O row.
Last case enforces that

(Pij 2 1/3

when i is the center of an ideal j th aggregate, which would
correspond to the aggregate’s basis function peak.

Note: p(D;*4)) <1
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; '4 . an alternative to A for diffusion operators®
‘R call

B Aij if 1£jandjeSs;
0 otherwise

which might lead to negative or small diagonal entries ... or more generally
> i |1 Aij]
| Ayl

D(A;) > D(A;) where D(A;) =
Consider instead lumping that maintains row sums by modifying either

in this order

» diagonal entry of preference

» retained positive off-diagonal entries
» retained negative entries }

to enforce  D(A;) < 7D(A;)
\

wser tolerance

Sandia
* Dropping [ subscript for remainder of presentation @ Ishveores



A; =Lump_AvoidSmallDiag( A;,R;,T)
Input:
A; it row of matrix with entries to be dropped
R; set of column indices in i** row to be removed
T tolerance indicating that D(A4;) should not exceed 7D(A4;)
Output:
A; matrix row where A@jj =0 for j € R; and A;v = Av where v is a constant vector

1. Let r; « Eke’)h Ae’k

2. if r; > 0 then A;; < A;; +7; |/ decreases D(A4;)

3. else {

4. Let K < {k| A >0 A k#i A k¢ R}

5. Let K] «{k| A <0 A k#i N k¢ R}

6. Let H,:_ — Zkeic:r Aih; K; < ZkEIC; Az‘k;

7. if |?‘3| < K,,—;_ then fiij — Azj(l + (S%) for _}' € K,::_ where 6,5 — Ti/fiJr
8. else {

9. A;; + 0 for j € K J zero out the K by distributing a

10. P i + K7 / portion of r; (= ;) to them

11. if K, == () then redistribute to K1 if possible or if not

12. possible do not modify row i and return
13. else {

14. find largest positive r¥ < min(d;, |;|) such that D(4;) < 7D(A;)
15. define A; such that its only nonzero values are
17. fL‘j — Aw(l + 51) fori e }C;
18. where §; « (f; +1})/Kk™
19. }
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| ; ' P post-process P

Force 0 < Pij <1

i P in ||F
via P; = argmin ||F; — B2
P;

subject to sz'j =0 if Pij = 0, Pz'j >0, Pz'j <1, v = P;u

where P; is i row of P & v 1is vector of all ones.

Solved by 2-step process when feasible solution exists

= shift all nonzero P;; in i row by §;
= enforce all bounds

Must determine &; to maintain P;v = P;v when bounds enforced.

Done by assuming a minimal set of bound-violating entries, determining §; for this
set. Add one entry to set if shift causes more bound-violating entries, repeat §; and
SO on.
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;’ ' P post-process P

Algorithm 3 Constrain_One_P_Row(ﬁ-, lowerBound, upperBound)

optimal < false
kE +0

lr < argmin,, P, [¢x ] > lowerBound
uy < argmin,  P;[ux| > upperBound

while ( optimal == false) {

G ¢ ( Sy, Bili) = 520 Bl )/ e — )
// does P,[ty] — &y, still satisfy lowerBound & does P;[u;] — 8, still violate upperBound

if 8y < min( P;[¢x]—lowerBound, P;[ux]—upperBound) ) , optimal ¢ true
else {

if ﬁi[fk]—lowerBound < ﬁi[uk]—upperBound O — Ll + 1

else up ¢+ up +1

}

k+—k+1

}

forj=1: ¢ —1, P;[j] « lowerBound
fOI‘jZEkI U :1’ 1:')}[_]](— PZ[]]_
for j = ug : nnz(P;), P;[j] + upperBound



'Results: Refined Boundary Mesh

Poisson 2D Linear Elasticity
w BCs
BCs u(top corners)

B Dirichlet x
u(top) =0« displacements
Neumann - u(bottom corners)
clsewhere <« . Dirichlet x, y

HH displacements
Neumann
-1-1 -08 -06 -04 -02 0 0.2 04 06 08 1 -1 -0.5 6 0‘.5 ‘1I elseWhere
6= .05 6 =.05
Algorithm Choice AMG its. | AMG Solve Algorithm Choice AMG its. | AMG Solve
complex. Setup complex. Setup
i 1.33 (19 ] .21 16 ) 1.31 (60 .84 2.18)
3 Py 1.33 20 | .23 18 P, 1.31 50 | .89 1.66
43 3 1.33 15 27 14 ~
A B 133 14 | 28 .12 Dy _ 131 53 | 87 211
. Dy Py 131 (48 | 90 1.56
Dy, 1.33 14 22 12
D, B, 133 14 | 26 .12 Qv
D, A ) 133 14 | 26 .12 EFE G, e%g
D, 4 B 133 14 | .29 .12 “""‘ @

linear FE on 256 x 256 quad mesh, CG residual reduced by 108 , 7 = 1.1 for 4, , 4 MG levels
distance Laplacian used for strength, p=2 Cheby relaxation, rotations not used for elasticity
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Darcy Flow

SPE10 oil/gas subsurface flow

All results use D; .... SA-AMG did not converge without D; !

0 = .02 6 = .05 0 =.1
Algorithm Choice AMG  its. AMG  its. AMG  its. porosity
complex. complex. complex. range of 1012
D, 1.85 24 2.00 27 2.60 31
D, P 1.85 26 2.00 28 2.60 31
A, D 1.85 24 2.00 19 2.60 17
A, D, P 1.85 22 2.00 19 2.60 16
6 = .02 6 = .05 6 =1
Algorithm Choice || AMG Solve | AMG Solve | AMG Solve
Setup Setup Setup
D, (249 1.86) 264 225 | 315  3.62
D, 2 2.74 231 | 287 231 | 346 3.67
A, Db 293 1.86 | 3.13 1.63 | 3.69 227
A, D P, 3.18 169 | 331 160 | 3.99 213

finest mesh 660K dofs, CG residual reduced by 108 , 7 = 1.1 for 4; , 5 MG levels, @ Sandia

. National
standard strength measure, p=2 Cheby relaxation Laboratores



Wind Turbine

uncoupled formulat1on

? | t ditional ‘ ' 60— 3¢ — coupled, traditional
“ traditiona he y
28] -0 D —}— coupled, D, I
26 - P AJ . 50 N T
Sl i = B = uncoupled, traditional -
, prsify al
2 i - —i— uncoupled, D o
¥\ & Sprsify A, Py 40 pied, Ui ] .
22 - 8
¢ S
O 20 1 4@
& g
Q 18 i Kok i *—-‘:
16 d é e b@a . soxxa M
ass PN
144 DOAKALALLL & LAY BL 6A B B
OGOQOQA A QA BARCOOO®
121 ®000d ved -
"% 5 10 15 _ 20 25 2 as 40 00 5 110 1|5 2lo 215 3|0 3L5 40
Linear Solve Linear solve

uncoupled formulation i

Algorithm Choice || AMG Solve AMG i
Setup . Complexity .

traditional 3.15 7.78 1.66

Dy 3.52  4.41 1.65

Ay Sprsfy P 5.47  3.16 1.61

finest mesh 23M dofs, GMRES residual reduced by 10,
T = 1.1 for 4; , 5 MG levels, standard strength measure,
p=2 Cheby relaxation, 8 = .02



V
%‘ Wind Turbine Robustness Study

Bl Traditional SA
coupled formulation Bl SA+ D,

NC: no convergence

100! NC NC NC
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D, needed to avoid erratic failures that occur for traditional SA !
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% Concluding Remarks

« 3 SA-AMG adaptations presented
— Alternative definition of D,
— Alternative definition of 4; using standard s,
— Modification/post-process of A,

« Sometimes help improve robustness or convergence of SA-AMG, rarely hurt

— Poisson & linear elasticity on stretched mesh
— SPE10 benchmark
— wind calculation

Support provided by the US Dept. of Energy, Office of Science,
Advanced Scientific Computing Research (ASCR)
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