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What is a Time Series?

Observations X = [X1  X2,..., Xp] € R™ an ordered set of generally real valued
measurements, with a natural temporal ordering. Given a labeled dataset D :=

{(x;, v}, € XxY, TSC aims to train a classifier model €, by learning from D in order
to classify a query TS or generally map the space of possible inputs to a probability
distribution over possible output classes.
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Time Series Classification

Uncertainty Quantification in Time Series Analysis: essential for many scientific and engineering

applications.

Forecasting, extrapolation
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Outlier detection, interpolation
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Time Series Classification

Problems
1. Uncertainty
« Measurements are often noisy, low SNR, scaled, include missing/outlier points, not
well aligned, not of the same length, or way too long to maintain long term memory
2. Feature Engineering
 Discriminatory features are not always obvious, require SME expertise for labeling.
« TS ->image (e.g., Gramian fields, recurrence plots, Markov transition fields).
3. Data availability:
« Only a few samples/class
« (lasses are mislabeled or imbalanced.

Discriminative
Region

Class 1
Class 2

In contrast to feature engineering,
end-to-end deep learning aims to
incorporate the feature learning A\ time,

process while fine-tuning the ) w
discriminative classifier.
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Domain Representation for Time Series Classification

Hard to identify discriminative j:_xl(t) — 22(t) ]
features in a lengthy time series. > 1

C |
Move to another feature space? al 1
« Fourier transform, DFT or STFT 6 | lxz-(t) T Zi‘f;l Q; sip(27rf%mt + ﬁi) | | .

1 COSiﬂe tra ﬂSform (DCT) 0 5 10 15 20 25 30 35 40 45 50
« Shapelets transform
« Manually-selected features 1 x x x x x x x x x
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Time Series Classification Methods

* k Nearest Neighbors » Short time FT + Collective Of » Convolutional Neural
with some distance - Wavelets Transformation-based Networks
measure . Time Series Forest (TSF) Ensembles (COTE, 35) . Recurrent Neural

» Support Vector * Hierarchical Vote Networks

, » Shapelet Transform ,
Machines Collective of

Transformation-Based
Ensembles (HIVE-COTE)

- Bag of SFA Symbols
(BOSS)

* An ensemble of nearest neighbor classifiers with different distance measures outperforms in
accuracy all of the ensemble’s individual members.
« Scalability: what about the computational cost?
« e.g, Shapelet (@ member of HIVE-COTE): O(n? [4)

Bagnall, Anthony, et al. "The great time series classification bake off: a review and experimental
evaluation of recent algorithmic advances." Data mining and knowledge discovery 31.3 (2017): 606-660.
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Distance Metrics: Euclidean vs. Dynamic Time Warping

Euclidean Distance " Dynamic Time Warping (DTW) Distance
n L
p\P
d(Xy,X3) = (z_ |x1,i - xz,i| ) d(Xq,X3)
i=1 <
=arg min z (X1, — X2,j)?
W=wy,...Wg k=1,Wk=(i,j)
AN \
With standard ——J\AAJ\ s
dynamic
f\ A programming,
VoW L \ complexity of
DTW: 0 (n2) VNN I
0(n) The Euclidean distance

assumes 1-1 mapping,
which implies the same
length. Can we allow for
sequence compression &
decompression in time?
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Accuracy-efficiency tradeoff: We want our warping path
to stay relatively close to a diagonal line.
DTW with w= 100% (no warping window) =>
unconstrained DTW.
DTW with w= 0% degenerates to the ED distance.




[llustrations: TNN-ED & 1TNN-DTW

Fungi dataset: 18 classes

Train: 18 samples
T T T

20 40 60 80 100 120 140 160 180 200

Test: 186 samples
T T

20 40 60 80 100 120 140 160 180 200

1 TS/class for training < 10% test samples

TNN-ED (w=0), error rate = 0.1774
TNN-DTW (learn w), error rate = 0.1774 (0)
TNN-DTW (w=100), error rate = 0.1613
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GestureMidAirD1 dataset: 26 classes

Train: 208 samples
T
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Variable-length TS

TNN-ED (w=0), error rate = 0.4231
TNN-DTW (learn w), error rate = 0.3615 (5)
TNN-DTW (w=100), error rate = 0.4308
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[llustrations: TNN-ED & 1TNN-DTW

Plane dataset: 7 classes
Symbols dataset: 6 classes

Traln 25 samples

Train: 105 samples
T T

—
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Test: 995 samples

gwﬁm%g oy

150 200 250 300 350
t
Discriminative regions for all 7 classes Good candidate for frequency domain
TNN-ED (w=0), error rate = 0.0381 TNN-ED (w=0), error rate = 0.1005
TNN-DTW (learn w), error rate = 0.0000 (5) TNN-DTW (learn w), error rate = 0.0623 (8)
TNN-DTW (w=100), error rate = 0.0000 TNN-DTW (w=100), error rate = 0.0503
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Relative Distance as a Confidence Metric

Correct prediction Incorrect prediction Incorrect prediction, but
despite long dyy despite short dyy low dy/dc; confidence
April 13, 2022
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lllustration: Visualizing Classifier Confidence

Plane dataset: 7 classes
Qlassifier Prgdictipn
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lllustration: Visualizing Classifier Confidence
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lllustration: Visualizing Classifier Confidence

DiatomSizeReduction dataset: 4 classes

Train: 16 labeled samples Classifier Prediction

x(t)

x(t)
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lllustration: Visualizing Classifier Confidence

ArrowHead dataset: 3 classes

Train: 36 labeled samples Classifier Prediction

Test: 175 samples

A /)‘
%jig/ 1 ,/
E/

Mige '
l\/ Vi

5&* A

2 t
April 13,2022

@ |



CNNs for TSC

Our knowledge and intuition for CNNs on images carry over to time-series.
« ACNN model: f,(6;,x) = f._41 (HL_l,fL_z(HL_Z, ...fl(el,x))) incorporates feature engineering

internally. Hence are able to extract information in a faster and more direct way.
« Convolution: applying and sliding a 1d filter over time (images: 2d, width and height).
« Local/global pooling: avg/max over a sliding window or the whole time series.

Convolution Convolution
[ B BN J
Output
Classes
L= /E_
Input TS T ResNet Pooling  Fully Connected
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CNNs for TSC: Experiments

Accuracy u(a) over 10 runs of each algorithm: ResNet (deep flexible architecture) outperforms other CNNSs.

Multi layer Full Residual :
Datasets perceptyron Con}i/olutional network Encoder Xﬂuéﬂlﬁgale S
(MLP) Networks (FCN) | (ResNet)
Coffee 99.6(1.1) 100.0(0.0) 100.0(0.0) 97.9(1.8) 51.4(3.5)
Beef 72.0(2.8) 69.7(4.0) 75.3(4.2) 64.3(5.0) 20.0(0.0)
ECG200 91.6(0.7) 88.9(1.0) 87.4(1.9) 92.3(1.1) 64.0(0.0)
ECG5000 92.9(0.1) 94.0(0.1) 93.4(0.2) 94.0(0.2) 61.8(10.9)
50words 68.4(7.1) 62.7(6.1) 74.0(1.5) 72.3(1.0) 22.0(24.3)
TwoleadECG 76.2(1.3) 100.0(0.0) 100.0(0.0) 86.3(2.6) 50.0(0.0)
Gun_Point 92.7(1.1) 100.0(0.0) 99.1(0.7) 93.6(3.2) 51.3(3.9)
Plane 97.8(0.5) 100.0(0.0) 100.0(0.0) 97.6(0.8) 13.0(4.5)
Symbols 83.2(1.0) 95.5(1.0) 90.6(2.3) 82.1(1.9) 22.6(16.9)
wafer 99.6(0.0) 99.7(0.0) 99.9(0.1) 99.6(0.0) 91.3(4.4)
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RNNSs for TSC

RNNs have remarkable performance on sequential learning problems.
« However, long sequence learning with RNNs remains a challenging problem:
1. Short-term memory, hard to memorize extremely long-term dependencies
2. Training RNNs with back-propagation-through-time: vanishing and exploding gradients
3. Forward and back-propagation are performed sequentially; time-consuming.
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) models powerfully model
complex data dependencies. Gates are just neural networks that regulate the flow of information

through the sequence chain.

forget gate cell state | STMs reset gate
Cell state: transport
Input, forget, output gates
'+ Activations: keep/forget

GRUs i % 5

............

Only two gates
Fewer tensor operations
Faster to train than LSTMs Lpdate gate

input gate output gate
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RNNs for TSC: Architectures

Echo State Networks (ESNSs), reservoir computing
« TSCin wireless communication channels

« The input signal is connected to a fixed (non-trainable) and random dynamical sparsly-
connected system (the reservaoir).

« Vanishing gradients: in BP, the gradient can get vanishingly small, effectively preventing a
weight from getting updated. ESNs eliminate the need to compute the gradient for the

hidden layers.
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Jaeger, Herbert, and Harald
Haas. "Harnessing
nonlinearity: Predicting
chaotic systems and saving
energy in wireless
communication." science
304.5667 (2004): 78-80.
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RNNs for TSC: Experiments

Accuracy over 1 run of each algorithm: ESNs are competitive. More experiments to follow.

Datasets MLP FCN ResNet LSTM ESN

ECG200 0.920 0.900 0.870 0.890 0.920
ECG5000 0.935 0.941 0.931 0.943 0.944
50words 0.712 0.679 0.727 0.683 0.758
LrgKitApp 0.480 0.896 0.893 0.902 0.901
FordA 0.769 0.906 0.928 0.932 0.932
Plane 0.981 1.00 1.00 0.933 1.00

wafer 0.996 0.997 0.997/ 0.992 0.997/
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Conclusions

Work in progress ...
« Choosing the right time-series classification algorithm depends heavily on

the problem domain and discriminative features of the training data.
« No one solution fits all.

 New research for efficient time series classification methods is needed for
emerging mission problems.

Next:
« Computational cost (runtime) comparisons
« Dropout for UQ measures in CNNs and RNNSs

April 13,2022
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Thank youl!

For questions or follow up discussions:

Ahmad Rushdi rushdi@stanford.edu
Erin Acquesta eacques@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NAO003525.
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