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Structural lattices & cellular structures

Aluminum Foam Sandwich (AFS) Panel

Quasi-static elastic behavior:
High strength-to-weight ratio
High stiffness-to-weight ratio

Dynamic elastic behavior:
Delayed wave transmission

Plastic behavior:
Plastic energy absorber (‘crumple zone’)

Dynamic plastic behavior:
Modification of acceleration-time profile 

Vibration behavior:
Damping of specific frequencies
Broadband damping

Novel functions:
Negative poisson’s ratio
Multifunctional behavior

 

Aluminum Honeycomb

Uses of Structural Metamaterials Other Uses
Particle Filter
Catalyst
Heat Exchanger
Electrolytic reactor
Etc.

 

Key background references:
    Surjadi…Lu, Adv. Eng. Mater., 2019
    Bauer…Valdevit, Adv. Mater., 2017 
    Zadpoor, Materials Horizons, 2016
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Structural metamaterials outline
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Topic 1:   Novel metamaterials for Sandia environments

Topic II:   Requirements-based optimization of metamaterials

Topic III:  Material imperfections & lattice qualification



X. An, Extreme 
Mechanics Letters, 2019

Lattices: unique, tailorable properties

1. Lattices can give you properties not found in bulk materials

2. Lattices expand the range of effective properties available to your printer
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316L Lattices

316L LPBF

60 mmX. Shang, J. Materials Research, 2018

© HRL Laboratories, LLC/Photo by Dan Little

J. Bauer, Nature Materials, 2019 
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 The rubric for developing structural lattices is 
unnecessarily constrained

What have others missed?  
Can we envision new deformation modes 
that give more opportunities for control?

Truss-like strut-and-node 
architectures are limiting:

• Bending & torsion
• Tension & Compression
• Buckling

Example publications:
    Schaedler…Carter, Science, 2011
    Jiang…Chen, Advanced Materials, 2018 



Frictional energy dissipation
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US Patent 10,808,794, “Topological damping materials and methods thereof”, issued 10/20/2020

A. Garland, Coulombic friction in metamaterials to 
dissipate mechanical energy, Extreme Mechanics 
Letters, 2020



Interpenetrating Lattices
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 Two semi-independent sublattices transmit energy via contact or a controllable 
separation distance

US Patent Filed: “Metamaterials comprising interpenetrating lattices”, March 2021



Interpenetrating lattices can be readily produced 
from a single material on many printers!

88

Polyjet 
(Objet J826)

Multi-Jet Fusion
(HP 580)

Laser Powder Bed Fusion
(ProX DMP 200)

Multiphoton Lithography
(Nanoscribe GT)

50 
mm

50 
mm

25 
mm



Example: Stress-dependent electrical resistivity
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 Lattice arraignments controls interface 
interactions

◦ Interfaces offer new behaviors

 Highly stress sensitive resistivity

AA  (RD)(RD)

BB  (FCC)(FCC)

≠
ABAB  (RD(RD&&FCC)FCC)

ABAB  (RD(RD&&FCC)FCC)

White, Garland, Alberdi, Boyce, Additive Manufacturing, 2021



Damage Sensing

 Plastic damage can be assessed in real time, or passively after the fact

 Structural components can double as unpowered sensors
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White, Garland, Alberdi, Boyce, Additive Manufacturing, 2021



Vibration Isolation

 Vibrations are isolated by interfaces and damped by friction
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Response

Input

Rhombic Dodeca-

hedron Sublattice

White, et al., In preparation

Face Centered
Cubic Sublattice



Toughening

=80 mm
10 Cells

White, et al., In preparation

Base material toughness

Interpenetrating 
lattice

Rhombic 
Dodecahedron

Face Centered
Cubic (Octet)



Damage Progression
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FCC RD RD+FCC

Video speeds are equal: 1 sec =1.75 mm displacement



Cellular structures lose toughness as density decreases

14Gibson and Ashby, Cellular Solids, 1997

Can we architect?



A simple proof of concept topology:
Planar array of holes in an “arrestor” orientation
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notch

Planar array of holes

3.4% air
96.6% material

Conway…Boyce, Materials & Design, 2021



Architected pore-toughening
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exx
exx

-0.01

0.01 0.18

-0.15

Unmodified 96.6% Dense… Four rows of cylindrical holes

Material: Stratsys Durus, Polypropylene-like UV-Cured Glassy Polymer

3 mm 3 mm

Gc ~ 0.6 kJ/m2 Gc > 3.6 kJ/m2

Conway…Boyce, Materials & Design, 2021



Meso-scale toughening of a Metamaterial
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Unmodified Gyroid Gyroid with additional pores

Charpy toughness: 34 N-m Charpy toughness: 42 N-m

24% tougher by adding 3% air

Bar stays in one piece!
Conway…Boyce, Materials & Design, 2021
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Topic II:   Requirements-based optimization of metamaterials



Additive manufacturing enables generative design…

193Dprint.com

Envisioned by
an engineer in CAD

Generated by an iterative 
gradient-based 
optimization



Examples: nTopology; Altair hyperworks; Materialise Magics

Even a CAD “STL” file of a simple lattice
Can require many gigabytes.

10,000 struts x 100 elements = 1 million elements

Renishaw’s titanium optimized spider support

Lattices are computationally very expensive … 
Optimization is generally confined to elastic problems
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Design objective: crush energy absorption

Nonlocality: Shear localization limits crush energy absorption
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Can FCC and BCC unit cells be intelligently combined to improve 
compressive energy absorption?
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Homogenization techniques for periodic structures

Arabnejad and Pasini, Int. J. Mech. Sci., 2013 

Review: Hassani and Hinton, Computers & Structures, 1998

Micromorphic continuum: 
Developed by Eringen and Mindlin in 1960’s
Used for size-effects (e.g. strain-gradient theory)
Captures localization phenomena
Requires a regularization length scale
See review by Forest and Sievert (2006)
 

Dingreville, Robbins, Voth,  JOM, 2013
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Two-unit cell Nonlinear optimization problem

Objective: Maximize the plastic work for a given density

Constrain the volume fraction

Prevent softening

Implicit global and local PDE constraints from
enforcing equilibrium

Constrain density
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Result: optimal tiling for different volume fractions

25% dense 50% dense 75% dense

“meso-I”

Alberdi, et al., Materials & Design, 2020 25



Experimental validation of the “meso-I” structure

Alberdi, et al., Materials & Design, 2020 26



Second example: two objectives & manufacturing constraints
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Two-objective optimization of a unit cell shape
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For a 13x13 pixel discretized unit cell, maximize:
1) stiffness
2) transmission time for an elastic wave (shock)

Employ manufacturability constraints:
1) minimum feature size = 1 pixel
2) no unsupported overhangs

3270
3249

3250

Pareto front

Improved multi-objective
tradeoffs



A genetic algorithm…

Parents

Offspring

Mutations

Garland, et al., Materials & Design, 2021 29



Replace costly explicit FEA with a CNN

a) b)

Explicit FEA Convolutional Neural Network 

Garland, et al., Materials & Design, 2021 30



Active-learning based lattice design: 
two objectives: stiffness and elastic wave delay

1st  Generation

11th  Generation

Garland, et al., Materials & Design, 2021 31



Experimental validation

3270

3249

3250

Garland, et al., Materials & Design, 2021 32
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Topic III:   Material imperfections & lattice qualification 



Real lattices are far from perfect… unlike their CAD/FEA models!

34A. Dressler, et al., Additive Manufacturing, 2019



We use high-throughput testing to evaluate stochastic response

35Boyce, Salzbrenner, Rodelas, Swiler, Madison, Jared, Shen, Adv. Eng. Mater., 2017

US Patent 11,002,649



Rapid stochastic-aware process optimization

36Heckman…Boyce, Mater. Sci. Eng. A, 2020



Lattices naturally homogenize heterogeneous material response
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Modulus
Yield Strength



Effective mechanical properties of AM are strongly size-dependent

A. Roach, et al., Additive Manufacturing, 2020 38



It’s the surface roughness• Reduces the effective cross-sectional area
• Adds a stress concentrating effect

A. Roach, et al., Additive Manufacturing, 2020 39



FEA validates roughness effect

A. Roach, et al., Additive Manufacturing, 2020 40



Overcoming the Inspection/QC burden?
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Garland…Boyce, Additive Manufacturing, 2020



Summary
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Many creative metamaterials are waiting to be discovered

Optimization requires innovation to manage computational 
expense

As-manufactured lattices are far from perfect, but can be 
qualified


