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This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Structural metamaterials

Brad L. Boyce

Materials, Chemical, and Physical Sciences Center
Sandia National Laboratories

FY
. s - i) ¥ = o =T m - =
B A B B e T e ] i
4 R SR K & = L vl [l | £ TEER e —
. s S hAG B i =
HIETE |
ARESE -

d Y
d gineering

a0 are
d ONna e Ol0¢8 d
SandialNationaljLaboratories is.a.multimissionslaboratoryimanagediandioperatedlbyiNationalk Technoloa&IEngineeringiSolutionsiofiSandia ALL C. Jalwholly‘owned
subsidiaryjoffHoneywelljInternationallinc. fforfthejU.S SDepartmentlofiEnergy'sNational|Nuclear)SecurityJAdministrationjunderfcontractj DE-NA0003525.

SAND2022-3878C



Structural lattices & cellular structures

Uses of Structural Metamaterials Other Uses
Quasi-static elastic behavior: Particle Filter
High strength-to-weight ratio Catalyst
High stiffness-to-weight ratio Heat Exchanger
Electrolytic reactor
Dynamic elastic behavior: Etc.

Delayed wave transmission

Plastic behavior:
Plastic energy absorber (‘crumple zone’)

Dynamic plastic behavior:
Modification of acceleration-time profile

Vibration behavior:
Damping of specific frequencies
Broadband damping

Key background references:
Surjadi...Lu, Adv. Eng. Mater., 2019
Novel functions: Bauer...Valdevit, Adv. Mater., 2017

Negative pOiSSOﬂ’S ratio Zadpoor, Materials Horizons, 2016
Multifunctional behavior 2

Aluminum Honeycomb
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Structural metamaterials outline g ( L3 Alamos

Topic 1: Novel metamaterials for Sandia environments
Topic |I: Requirements-based optimization of metamaterials

Topic lll: Material imperfections & lattice qualification



Lattices: unique, tailorable properties

1. Lattices can give you properties not found in bulk materials

2. Lattices expand the range of effective properties available to your printer

© HRL Laboratories, LLC/Photo by Dan Little
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The rubric for developing structural lattices is e,
unnecessarily constrained
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Truss-like strut-and-node
architectures are limiting:

Example publications: ) Bendmg & torsion

Schaedler...Carter, Science, 2011 * TenSi(?n & Compression
Jiang...Chen, Advanced Materials, 2018 * Buckling

What have others missed?
Can we envision new deformation modes
that give more opportunities for control?
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Frictional energy dissipation
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A. Garland, Coulombic friction in metamaterials to

dissipate mechanical energy, Extreme Mechanics

Letters, 2020

US Patent 10,808,794, “Topological damping materials and methods thereof”, issued 10/20/2020



Interpenetrating Lattices

Two semi-independent sublattices transmit energy via contact or a controllable
separation distance
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US Patent Filed: “Metamaterials comprising interpenetrating lattices”, March 2021 7



Interpenetrating lattices can be readily produced N ey
from a single material on many printers!

Polyjet Multi-Jet Fusion Laser Powder Bed Fusion Multiphoton Lithography
(Objet J826) (HP 580) (ProX DMP 200) (Nanoscribe GT)




Example: Stress-dependent electrical resistivity
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Lattice arraignments controls interface
interactions

o |Interfaces offer new behaviors
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Highly stress sensitive resistivity
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White, Garland, Alberdi, Boyce, Additive Manufacturing, 2021 9
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Damage Sensing (h) i, ok ames

Plastic damage can be assessed in real time, or passively after the fact

Structural components can double as unpowered sensors
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Laboratones

Vibration Isolation ()

Vibrations are isolated by interfaces and damped by friction
Response

Tranmisability

2000 3000 4000 5000
Frequency (Hz)

White, et al., In preparation 11



Toughening
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Damage Progression _!E Lok Alamos
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Cellular structures lose toughness as density decreases () &

laboratories '

e FRACTURE TOUGHNESS
& ® McINTYRE AND ANDERTON (1979) PU (R} £ LISTED IN REF.
- [ rowikes (1870) PUIR) 4 =0.5mm
. 4 § MAITI ET AL 119845) PMA £ =0.3mm
() | A MORGAN ETAL (1981) G rhitect?
83 10 [ § ZWISSLER AND ADAMS (19831 G -
= ¢ BREZNY AND GREEN (1989b)
(HPA,AZ, AM]
i
O
3
|—-
o
% 10 B .
o '
< K
o
L
()
Ll |
N e ~
?&’ ‘ . %
K
s —_ =065 (E)
o qsm Ps
o
2
-l
040-3 107? 107 !

RELATIVE DENSITY &%,

Gibson and Ashby, Cellular Solids, 1997 14



A simple proof of concept topology:
Planar array of holes in an “arrestor” orientation
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Conway...Boyce, Materials & Design, 2021 15



Architected pore-toughening

Unmodified 96.6% Dense... Four rows of cylindrical holes
3 mm

0.01 0.18

E-:XX 8XX

-0.01 -0.15
G, ~ 0.6 kJ/m? G, > 3.6 kJ/m?

Material: Stratsys Durus, Polypropylene-like UV-Cured Glassy Polymer Conway...Boyce, Materials & Design, 2021 16
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Meso-scale toughening of a Metamaterial QR < Leimames

Unmodified Gyroid

Charpy toughness: 34 N-m Charpy toughness: 42 N-m
24% tougher by adding 3% air

Bar stays in one piece!
Conway...Boyce, Materials & Design, 2021 17
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Topic |I: Requirements-based optimization of metamaterials

18



. . . . Sandia .|' A
Additive manufacturing enables generative design... ) = @'ﬂ_ ok Alames

=3

Envisioned by \
an engineer in CAD

Generated by an iterative
gradient-based
optimization

3Dprint.com ’ J 19



Lattices are computationally very expensive ..
Optlmlzatlon IS generally confined to elastic problems DS

National
laboratories '

Even a CAD “STL” file of a simple lattice
Can require many gigabytes.

10,000 struts x 100 elements = 1 million elements

Renishaw’s titanium optimized spider support

Examples: nTopology; Altair hyperworks; Materialise Magics 20
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Design objective: crush energy absorption i, [ Q8 et

Nonlocality: Shear localization limits crush energy absorption

21



Can FCC and BCC unit cells be intelligently combined to imp AR
compressive energy absorption?
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Homogenization techniques for periodic structures i, (RO etames
t t Direct Micromorphic
T THEEE
Q° 9!
£ : Homogenization -
; T
X y X

| { Ui T,

Fig. 2. Homogenization concept of a cellular structure.

Arabnejad and Pasini, Int. J. Mech. Sci., 2013 Dingreville, Robbins, Voth, JOM, 2013

Review: Hassani and Hinton, Computers & Structures, 1998
Micromorphic continuum:
Developed by Eringen and Mindlin in 1960’s
Used for size-effects (e.g. strain-gradient theory)
Captures localization phenomena
Requires a regularization length scale
See review by Forest and Sievert (2006)

23



A

Two-unit cell Nonlinear optimization problem i (RO oo

Objective: Maximize the plastic work for a given density

Constrain the volume fraction

Prevent softening

k=1,2,..,n, Implicit global and local PDE constraints from
k=1,2,....n, enforcing equilibrium

Constrain density

24
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Result: optimal tiling for different volume fractions e l..,{.'+ Lok e

25% dense 50% dense 75% dense

}\ (@) Vy =025 (b) Vy = 0.5 (c) Vy =075

“meso-1”

Alberdi, et al., Materials & Design, 2020 25



Experimental validation of the “meso-I” structure e O
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Alberdi, et al., Materials & Design, 2020 26
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Second example: two objectives & manufacturing constraints

27
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Two-objective optimization of a unit cell shape o ( VLo Atamos
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_ For a 13x13 pixel discretized unit cell, maximize:
Fixed Face 1) stiffness
2) transmission time for an elastic wave (shock)

Employ manufacturability constraints:
1) minimum feature size = 1 pixel

2) no unsupported overhangs )8



A genetic algorithm... () . an
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Garland, et al., Materials & Design, 2021 29



Replace costly explicit FEA with a CNN

Explicit FEA

a) o il

33333

Garland, et al., Materials & Design, 2021

)
* Los Alamas

= fraining loss
= yalidation loss
- mean absolute error

30



Active-learning based lattice design: — N\
two objectives: stiffness and elastic wave delay e P HotARMS
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Experimental validation

1
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Garland, et al., Materials & Design, 2021
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Topic lll:  Material imperfections & lattice qualification

33
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21 mm

A. Dressler, et al., Additive Manufacturing, 2019 34
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US Patent 11,002,649

Engineering Stress (MPa)

8 10
Engineering Strain (%)

Boyce, Salzbrenner, Rodelas, Swiler, Madison, Jared, Shen, Adv. Eng. Mater. 3201



Rapid stochastic-aware process optimization i,

laboratories '
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Effective mechanical properties of AM are strongly size-depe jG4r
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 Reduces the effective cross-sectional area

It's the surface rou g hness Adds a stress concentrating effect
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FEA validates roughness effect i

Extract
Edge
Data
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Overcoming the Inspection/QC burden?
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Summary _ . _
Many creative metamaterials are waiting to be discovered

Optimization requires innovation to manage computational®2
expense

Strain (%)

As-manufactured lattices are far from perfect, but can
qualified




