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The need for RF photon number detectors

• RF photon number detectors essential in transmon-based quantum computing
 Especially important: detecting photons in transmon frequency range ~5-7 GHz

• How they work: electrons absorbs incoming photons, and then transfers energy (as 
heat) to lattice vibration, raising temperature

• Detect temperature gain by dynamically measuring transverse resistance

• Need to satisfy the following criteria:
 Establish spatial separation between absorber and bolometer, so that excited 

photoelectron is not washed out by the dynamic resistance measurement
 Guarantee that heat transfer from absorber to bolometer is much faster than parasitic 

photoelectron loss processes (e.g., radiative decay)
 Ensure that the temperature gain per photon is high enough to be easily resolvable
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Building on Our Recent Work

• Recently, we pioneered microwave photon number detector using topological 
semimetal cadmium arsenide (Chatterjee et al., Phys. Rev. Research 3, 023046 (2021))
 At low temperature (< 0.7 K): Bulk becomes superconducting, while surface state remains 

semimetallic (graphene-like electron dispersion)
 Superconducting gap is significantly larger than photon frequency
 Surface electrons absorb incoming photons, and then transfer heat to bulk phonons 

(lattice vibrations), raising the bulk temperature

• Satisfies spatial separation between absorber (surface) and bolometer (bulk), as well 
as rapid heat transfer from absorber to bolometer, but:
• Problem: Temperature gain (and hence resistance gain) per photon is too small for true 

single-photon detection resolution

3



Physical Setup

• Key idea: Use low-dimensional system (0D absorber, 1D bolometer)
 Far lower heat capacity, and thus much higher temperature gain per absorbed photon

• p-wave superconducting nanowires are theorized to host localized Majorana zero 
mode (MZM) at each edge

• Problem: MZM is chargeless and gapless, and thus cannot absorb photons by itself

• Solution: Side-couple MZM to quantum dot (QD)
 QD-MZM charge-carrier hopping leads to hybridized states separated by microwave-

frequency gap
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Physical Setup (Cont.)5



Calculating the Phonon Emission Rate

• Decompose Majorana edge state into superposition of 1D bulk plane waves

• Phonon emission couples Majorana parts of upper (+) and lower (-) hybridized states

• Long-wavelength acoustic phonons: Use deformation potential treatment to 
calculate electron-phonon matrix element

• Emission rate from Fermi’s Golden Rule: 
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a: Majorana coherence length
L: nanowire length  

D: deformation potential
ᵴ� : nanowire density
vs: speed of sound in nanowire
A: nanowire cross-sectional area



Deriving the Transition Dipole Moment

• Necessary for calculating the following:
 Photon absorption rate (to determine required density of nanowires on-chip)
 Photoelectron spontaneous photon emission rate (to compare to phonon emission rate)

• Majorana wavefunction exponentially decays away from nanowire edge
 Coherence length ~ 14 nm (Chiu et al., Sci. Adv. 6, eaay0443 (2020))
 Can effectively model nanowire edge potential as square well

• Steps for calculating transition dipole moment:
 Model quantum dot as square well (analogous to nanowire edge)
 Derive transition dipole moment as function of QD-nanowire distance l
 Determine l corresponding to QD-MZM hopping strength ᵴ�

• For large QD-nanowire separation, moment scales with MZM coherence length 1/ᵳ�
 Intuition: For a smaller coherence length, QD needs to be moved closer to nanowire to 

achieve to same hopping strength, leading to smaller moment (and vice versa)
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Numerical Results8



Numerical Results (Cont.)9



Conclusion

• We have devised a scheme for high-resolution microwave photon number detection 
at the single-photon level using an array of nanowires coupled to quantum dots

• Essential for transmon-based quantum computing

• See published result on Cd3As2 detector in Physical Review Research

• Paper on QD-nanowire detector coming soon
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