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Abstract— This paper presents a run-to-run (R2R) controller
for mechanical serial sectioning (MSS). MSS is a destructive
material analysis process which repeatedly removing a thin
layer of material and imaging the exposed surface. The im-
ages are then used to construct a 3-dimensional image of a
material sample. Currently, an experience human operator
selects the parameters of the MSS to achieve the desired
thickness. The proposed R2R controller will automate this
process while improve the precision of the material removal.
The proposed R2R controller solves an optimization problem
designed to minimize the variance of the material removal
subject achieving the expected target removal. This optimization
problem was embedded in an R2R framework to provide
iterative feedback for disturbance rejection and convergence
to the desired removal rate. Since an analytic model of the
MSS system is unavailable, we adopted a data-driven approach
to synthesize our R2R controller from historical data. The
proposed R2R controller is demonstrated through simulations.
Future work will empirically demonstrate the proposed R2R
through experiments with a real MSS system.

I. INTRODUCTION

Serial sectioning is a destructive analysis process used
to gain insight on the micro-structure of materials. Serial
section is typically used when non-destructive analysis is
insufficient, due either to material composition or a higher
resolution of data for a specific features is required. Serial
sectioning repeatedly removes thin layers of material and
captures a detailed image of the exposed surface. At the end
of a serial sectioning experiment, this sequence of images
are combined to create a 3D reconstruction of the sample.
The 3D reconstruction can be used to gain knowledge of
the size, shape, and location of features of interest within
the overall sample. This process is used for failure analysis,
feature identification, and material composition experiments
[1]. A common use is identification of flaws in 3D printed
metal samples to locate the size and location of areas of the
sample which leftover powered metal may still exist or where
the print may have left a large void. There are three different
types of serial sectioning tools, micro-mill serial sectioning,
FIB laser serial sectioning, and mechanical serial sectioning
(MSS). This paper will be focusing on a MSS process.

This material is based upon work supported by the National Science
Foundation under NSF Grant Number CNS-2105631. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National
Science Foundation. Sandia National Laboratories is a multimission lab-
oratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Se-
curity Administration under contract DE-NA-0003525. †University of New
Mexico. ‡Sandia National Laboratories. Corresponding Author: Damian
Gallegos-Patterson dagallegospatterson@unm.edu

MSS uses a three phase repetitive process of grinding,
polishing, and optical imagining, to collect data from a
material sample. Each cycle of polishing and optical imaging
is called a slice which produces a montage of images which
can be stitched together to produce a larger cross-sectional
image of the entire surface or a specific region of interest.
The human operator inputs the desired number of slices
which is called a run. A run consists of the human operator
selecting a recipe a sequence of grinding pads and polishing
pads, as well as the polish time, speed, solution, and solution
dispensing time. The parameters of this recipe are the inputs
to the MSS system. This paper will develop an autonomous
controller for iteratively selecting the appropriate recipe
to achieve a target material removal amount. The current
method for achieving the target removal per slice is for an
experienced human operator to run a series of test slices. The
material removal is then measured using the average focal
height of the microscope used for the image montage. Based
on the calculated material removal and their experience, the
human operator adjusts the recipe, typically by adjusting the
polishing times for each pad. This process is repeated with
another run of test slices until the target removal amount is
achieved. This process is not ideal for several reasons. First,
it requires significant human intervention from a skilled oper-
ator whose valuable experience could be better used for other
pursuits. Second, the calibration of the recipe can require
multiple test runs, removing a large amount of material. This
is inappropriate for small material-samples since a significant
portion of the material-sample will not be sectioned at a
consistent rate. An automated MSS controller could both
reduce human intervention and improve the performance of
the system.

This paper proposes a run-to-run (R2R) controller to
reduce operator intervention while improving the precision
of material removal. R2R is described as ”similar to batch
processes but more extensive” [2]. R2R is commonly used to
reduce output variance and increase precision in systems that
perform repetitive processes [3] [4] [5]. R2R assumes that the
output is sparsely sampled which allows for a linear regres-
sion model to be used. We will be using R2R in combination
with constrained optimization with the goal of reducing the
variance of the output of the system awhile achieving the
target removal amount faster and more repeatable than the
”guess and check” current method being used. One of the
main challenges is that we do not have access to an analytic
first-principles model that maps recipes to material removal.
Instead, we will use a data-driven method to synthesize of
run-to-run (R2R) controller from historical operational data.
We will also compare our method with a state of the art
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method.
The remainder of this paper is organized as follows, in

section II we define the mechanical serial sectioning model,
followed by the explicit problem statement. In section III we
propose our method and solve the stochastic optimization
problem using run-to-run control and present current state
of the art methods for comparison. In section IV we present
the main results of the paper and compare the results of the
purposed method to the state of the art methods. Finally, in
section V we address future research and directions for this
work.

Notation: The mean and variance of a random variable x
will be denoted by E[x] and V[x] = E[xx⊤]−E[x]E[x]⊤. The
Kronecker product of matrices A and B is denoted by A⊗B.
The vectorization vec(A) ∈ Rnm of a matrix A ∈ Rn×m

is a vector comprised of the concatenated column vectors
of A. For a matrix A with linearly independent columns,
its left pseudo-inverse if a matrix A+ such that A+A = I .
In particular, the Moore-Penrose pseudo-inverse is A+ =
(A⊤A)−1A.

II. AUTOMATING MSS PROBLEM

In this section, we begin with a brief description of the
MSS plant, followed by the operational constraints and the
control objectives. We then provide a description of the
historical data available to us, used for data-driven controller
synthesis.

A. The MSS Plant

We begin by considering a deterministic system model
for the MSS plant. Due to heuristics of MSS systems we do
not have direct access to in-situ measurements, nor can we
change the recipe during a run. Thus, we model the MSS
system plant as a discrete time algebraic map of the recipe
ui to removal rate yi

yi = f(ui, di) (1)

where ui ∈ Rnu and yi ∈ R1 are the MSS ith system inputs
and outputs respectively, and the ith ‘time’-index represents
the slice number for the plant, depicted in Fig. 1a.

We note that the plant (1) ‘dynamics’ do not depend on
the system ‘state’ yi, thus representing a static non-linearity
mapping f(ui, di) : Rnu × Rnd → R1 that maps recipes ui

and additional hidden variables di to the removal rate yi. The
hidden variables di ∈ Rnd characterize all unknown factors
within the system, such as material hardness, thermal effects,
sensor measurement error, cutting and polishing pad wear,
cavities in the material, etc. Since we do not have access to
the hidden variables di, it is not possible to learn a model of
the static nonlinearity from historical data. Furthermore, even
if the plant model were known, we cannot utilize the hidden
variables di since they are unmeasured and time-varying.
Instead, we will use real-time feedback to adjust the recipe
ui online to achieve the desired removal rate yi → r where
r ∈ R1 is the target removal amount, represented in Fig. 1b.
Feedback control is ideally suited to the problem of rejecting
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Fig. 1. a.) Depicts the MSS System plant with user full user intervention
input uii. b.) Depicts the Feedback controllable system block diagram,
where the plant is based solely off of plant observations of the MSS and the
feed-back R2R controller is defined in section III.

unknown and varying disturbances di. However, the closed-
loop system shown in Fig. 1b) will be dynamic due to the
controller. We consider the plant (1) to be deterministic, but
unknown.

The MSS plant (1) is an over-actuated system; there are
multiple nu > ny = 1 inputs ui ∈ Rnu that can be
manipulated to track yi → r one output, the desired removal
rate r ∈ R1. The manipulated inputs are the recipe param-
eters summarized in Table I. For the automated system, we
envision that the MSS will operate with a fixed sequence of
multiple cutting and polishing pad types, as well as different
solution types for each pad. The automated system will then
select the polishing speed and polishing time for each of the
pads in the sequence. The vector ui ∈ Rnn of polishing-
speeds and polishing-times is the control input (recipe) for
the MSS system. For this preliminary work, we will only
manipulate the polishing times for a sequence of 2 pads.
Importantly for controller development, the removal rate (1)
is monotonically non-decreasing with respect to the polish
times i.e. polishing for a longer time will not result in less
material removed.

The over-actuation of the MSS renders human-in-the-loop
operation difficult, requiring the operator to have significant
experience and expertise to choose the appropriate recipe u ∈
Rnu . An automated system will improve the user-friendliness
of the MSS. Furthermore, an automated system could harness
this over-actuation to improving system performance, shorten
the calibration-phase, and reduce human error. Performance
objectives will be described in Section II-C.

B. Operational Constraints

Our controller must produce recipes u that are physi-
cally implementable by the MSS. The operational constraints



TABLE I
INPUTS (RECIPE PARAMETERS) FOR THE MSS

Input Variable Constraints
urt cutting pad type 1 ≤ γ ≤ 8
upt polishing pad type 1 ≤ γ ≤ 8
us polishing solution type 1 ≤ γ ≤ 4
uω polishing speed (RPM) for each pad 1 ≤ γ ≤ 300
u polishing time for each pad 5 ≤ γ

shown in Table I describe the physical limitations of the
MSS system. The maximum number of pads the system is
able to hold at a time is eight, therefore urt + upt ≤ 8 for
any recipe. For polishing solutions us we are able to select
one one of the following particle sizes 1µm, 3µm, 6µm, or
9µm which can be used in any combination with the pad
types. The speed at which the pads can be rotated uω is
limited to 300 RPM. The minimum amount of time a pad
can polish for is five seconds, due to ensuring a favorable
imaging surface while avoiding over use of polishing pads,
constraining polishing pads to more than sixty seconds and
less than 200 seconds will be imposed. The constraints for
our system is a nu-dimensional polytope

U =
�
u ∈ Rnu : Hu ≤ h

	
. (2)

We will analyze our R2R controller with and without these
constraints (2).

C. Control Objectives

Beyond automating the operation of the MSS, our control
objectives include improving is performance. Our control
objectives can be summarized by the following conceptual
stochastic optimization problem

ui = argmin
u

V[y − r|u] (3a)

s.t. E[y|u] = r (3b)
u ∈ U . (3c)

The desired controller should compute a recipe u such that
the expected material removal E[y|u] matches the target
removal amount r i.e. the recipe u should satisfy the equality
constraint (3b). Since the MSS is over-actuated nu > 1, there
are potentially an infinite-number of recipes u ∈ Rnu that
can achieve the desired removal (3b). Among these recipes
u, we would like to select the recipe that produces the
lowest variance (3a) so that the slices have uniform thickness.
Finally, the recipe u must be implementable (3c) given the
input constraints described in Section II-B.

In Section III, we will translate the conceptual stochastic
optimization problem (3) into an implementable determinis-
tic optimization problem. We will use a data-driven approach
to formulate this deterministic optimization problem from
historical operation data. This deterministic optimization
problem will be embedded in a R2R control framework to
iteratively ensure that the removal rate converges yi → r to
the target removal rate r.

D. Historical Operational-Data

We will use a data-driven approach to translate the con-
ceptual stochastic optimization problem (3) into an imple-
mentable deterministic form. The available data consists of
pairs of recipes ui ∈ Rnu and the resulting removal rate
yi ∈ R1. The entire available data set D = {Y,U}. The data
set D is comprised of historical usage of the plant providing
a set of outputs based off of previous operator defined inputs.
The set D ∈ RN×nD is the set of N states corresponding
to the set of inputs U ∈ RN−1×nU with respective outputs
Y ∈ RN×nY . Using this historical data, we are able to
approximate a deterministic model for 1.

III. OPTIMAL RUN-TO-RUN CONTROLLER

In this section, we describe the R2R controller for au-
tomating the MSS system. R2R control is the appropriate
paradigm for this problem due to the lack of in-situ mea-
surements and our inability to alter the recipe during a slice.
Our algorithm embeds a deterministic formulation of the
stochastic optimization problem (3) into a R2R framework in
order to compute optimal recipes u⋆

i+1. The R2R framework
provides a feedback mechanism for adjusting the recipe
u⋆
i+1 based on the material removal yi, which is measured

after each slice. This feedback is used to reject the hidden
variables di, which we consider disturbances.

A. Optimal Recipe

The main challenge for MSS controller synthesis is that
the plant model (1) mapping recipes ui to removal rate yi is
an unknown static non-linearity. However, since the removal
rate (1) is monotonic, we can use a linear approximation

yi = c+ b⊤ui (4)

where c ≈ f(ui, di) is the drift coefficient and b ≈
∇f(ui, di) is the slope coefficient around the operating point
ui. The parameters c ∈ R1 and b ∈ Rnu are uncertain and
time-varying due to both the changing linearization point
ui and the hidden variables di. To capture this uncertainty,
we will models these parameters as stochastic. Although
the probability density function of these stochastic variables
is unknown, we will use historical-data to quantify our
uncertainty using their empirical moments. We will use these
empirical moments to translate the conceptual stochastic
optimization problem into a deterministic optimization prob-
lem. Since we consider stochastic parameters, estimating the
parameters is non-trivial. We will describe a method for the
estimating the mean and variance of c and b in Section II.

First, we translate the stochastic equality constraint (3b)
into a deterministic constraint based on empirical moments.
Substituting the stochastic linear model (4) into the equality
constraint (3b) yields M

E[yi|ui] = E[c+ b⊤ui|ui] = ri.

Exploiting the linearity of the expectation, we obtain

E[c] + E[b]⊤ui = ri



where ri and ui are deterministic. This equality becomes the
deterministic constraints (6b) when the expectations E[c] and
E[b] are replaced by their empirical estimates µc ≈ E[c] and
µb ≈ E[b].

Next, we translate the conceptual stochastic cost (3a) into
deterministic cost function. Substituting the stochastic linear
model (4) into the cost (3a) yields

V[yi|ui] = E[(yi − ri)
2|ui] = E[(c+ b⊤ui − ri)

2|ui] (5)

where the mean value of yi is ri due to the equality
constraint (3b). Expanding the cost, yields

V[yi|ui] ∝ u⊤
i E[bb⊤]ui + 2u⊤

i E[bc]− 2u⊤
i E[b]ri

where the terms from E[(c + ri)
2] were omitted since they

do not depend on the decision variables ui. Substituting the
empirical estimates E[bb⊤] ≈ Σbb+µbµ

⊤
b and E[bc] ≈ Σbc+

µbµc, we obtain

V[yi|ui] ∝ u⊤
i (Σbb + µbµ

⊤
b )ui + 2u⊤

i Σbc − 2u⊤
i µb(µc − ri)

Since µc − ri = −µ⊤
b ui according to (6b), we obtain

V[yi|ui] ∝ u⊤
i (Σbb − µbµ

⊤
b )ui + 2u⊤

i Σbc

Finally, noting that µ⊤
b ui is constant, we obtain the determin-

istic cost (6a). Thus, the conceptual stochastic optimization
problem (3) can now be approximated by the following
deterministic optimization problem

ui = argmin
u

u⊤Σbbu+ 2u⊤Σbc (6a)

s.t. µc + µ⊤
b ui = ri (6b)

ui ∈ U (6c)

where the approximation is due to the use of empirical
estimates of the means µc,µb and variances Σbb,Σbc of the
parameters. Conveniently, the problem formulation (6) only
requires second-order statics for the model (4) parameters,
which we will estimate in Section III-C. Solving (6) will
produce the optimal recipe u⋆

i .

B. Run-to-Run Controller

Algorithm 1 Optimal Run-to-Run Control
1: Implement initial recipe u0

2: repeat
3: Measure material remove yi for i-th slice
4: Update (7) drift coefficient µc

5: Solve (6) for optimal recipe ui

6: Implement recipe ui

7: until All slices complete

The deterministic optimization problem (6) is static. Thus
in this section, we embed this optimization problem (6) into
an R2R framework to provide feedback. Our R2R algorithm
iteratively adjust the recipe u⋆

i+1 based on the measured
material removed yi during the previous slice i. The R2R
feedback allows the material removal to converge yi → r to

the desired removal rate r while rejecting the unmeasured
disturbances di.

Our R2R controller is described by Algorithm 1. After
each slice, the R2R measures the resulting material removal
yi. The difference yi − r between the actual yi and desired
r removal rate is used to update the drift coefficient µc.
We update the drift coefficient using exponentially weighted
moving average (EWMA) dynamics [6]

µ+
c = µc + λ(yi − r) (7)

where µ+
c is the updated drift coefficient and λ ∈ [0, 1] is a

tuning parameter. The EWMA update-law has many beneficial
properties [6]. The optimization problem (6) is solved with
the updated drift coefficient µc to obtain a new recipe ui

which is then implemented. Thus, we can interpret the drift
coefficient µc as a state and the equality constraint (6b) as
dynamics. The R2R controller continues to refine the recipe
ui until all slices have been completed.

The R2R Algorithm 1 indirectly adjusts the recipe ui by
updating the drift coefficient µc.

C. Mean and Covariance Estimation

We use the historical operational data {yi, ui}Mi=1 to
empirically estimate the moments µθ ≈ E[θ] and Σθθ −
µbµ

⊤
b ≈ E[θθ⊤] of the parameters θ = (c, b) of (4) used in

the optimization problem (6). This is non-trivial since the
parameters c ≈ f(u, d) and b ≈ ∇uf(u, d) are uncertain
due to their dependence on the hidden variables d and the
changing operating point u. This produces the regressor
equation

yi = µc + µ⊤
b ui + σi

where the non-determinism is lumped into the ‘noise’ term
σi = c−µc+(b−µb)

⊤ui+ σ̄. This noise σi include typical
measurement noise σ̄, as well as, the ‘noise’ c− µc + (b−
µb)

⊤ui due to parameter uncertainty. Clearly the combined
noise σi is not independent identically distributed (IID); it is
not identically distributed nor is it independently distributed
from the data {yi, ui}Mi=1. Thus, least-squares estimation is
not applicable. Instead, we use the generalized method of
moments (GMM) to estimate the moments µθ and Σθθ of the
parameters since it is applicable to non-IID noise.

GMM poses the moment estimation problem as an opti-
mization problem

θ̂ =argmin
θ





 1

N

XN

i=1
g(zi, θ)





2 (8)

where zi = (yi, ui) is the i-th data point. The sum in (8) is
the empirical approximation

E [g(yi, θ)] ≈
1

N

XN

i=1
g(zi, θ) (9)

of a vector-valued function E [g(yi, θ)] that is zero if and
only if the estimated parameter θ matches θ = θ̄ the true
parameter θ̄.

For estimating the mean µθ of the parameters θ = (c, b),
we use the vector-valued function E

�
ϕi(yi − ϕ⊤

i µθ)
�
. For



this function, it is known [7] that the GMM estimator (8) is
a weighted least-squares estimator

µ̂θ =

�XN

i=1
ϕiϕ

⊤
i

�−1�XN

i=1
ϕiyi

�
(10)

where ϕi = (1, ui). Estimating the covariance matrix Σθθ of
the parameters θ = (a, b) is more nuanced and summarized
by the following proposition.

Proposition 1. Let rank
�PN

i=1 ϕiϕ
⊤
i ⊗ ϕiϕ

⊤
i

�
= n2+n

2 .

Then

vec(Σ̂) =

 
NX
i=1

ϕiϕ
⊤
i ⊗ ϕiϕ

⊤
i

!† NX
i=1

ϵ2iϕi ⊗ ϕi

!
(11)

is a consistent estimator of the covariance matrix where ϵi =
yi−ϕ⊤

i µ̂θ is the estimation error using the mean µ̂θ obtained
from (10).

Proof. The covariance estimate (11) is obtained using the
vector-valued function E

�
vec(ϕiϕ

⊤
i )(ϵ

2
i − ϕ⊤

i Σϕi)
�
. Using

the linearity of expectation, it can be verified that this
function is zero if and only if Σ ≻ 0 is the true covariance

E
�
vec(ϕiϕ

⊤
i )(ϵ

2
i − ϕ⊤

i Σϕi)
�

= vec(ϕiϕ
⊤
i )ϕ

⊤
i

(
E
�
(θ − µθ)(θ − µθ)

⊤�− Σ
�
ϕi = 0

where yi = ϕ⊤
i θ and Σ = Σ̄θθ is the only positive definite

matrix for which this expression is zero.

The resulting GMM problem (8) has the form

vec(Σ̂) = argmin
Σ≻0






 1

N

NX
i=1

vec(ϕiϕ
⊤
i )(ϵ

2
i − ϕ⊤

i Σϕi)







2

(12)

Since ϕ⊤
i Σϕi = (ϕi⊗ϕi)

⊤vec(Σ) and vec(ϕiϕ
⊤
i ) = ϕi⊗ϕi,

we obtain the first-order optimality conditions

Sϕϕ

(
Sϕϵ − Sϕϕvec(Σ)

�
= 0 (13)

where Sϕϕ =
PN

i=1 ϕiϕ
⊤
i ⊗ϕiϕ

⊤
i and Sϕϵ =

PN
i=1 ϵ

2
iϕi⊗ϕi.

The crucial observation is that the matrix Sϕϕ is only positive
semi-definite. Therefore, the non-strictly-convex quadratic
program (12) has an infinite number of solutions of the form

vec(Σ̂) = S+
ϕϕSϕϵ +N (14)

where S+
ϕϕ is the Moore-Penrose pseudo-inverse of Sϕϕ and

N ∈ null(Sϕϕ). We will show that only one of these solu-
tions corresponds to a positive-definite covariance estimate
Σ̂, specifically N = 0.

First, we will show that the null-space null(Sϕϕ) ⊆ Rn2

is
the set of vectorizations vec(M) of skew-symmetric matrices
M = −M⊤ ∈ Rn×n. The vector-space of skew-symmetric
matrices has a basis eie⊤j−eje

⊤
i for j > i ∈ {1, . . . , n} where

ei ∈ Rn is the i-th standard basis vector. By properties of

Kronecker products, we have

Sϕϕvec(eie
⊤
j − eje

⊤
i )

=
XN

i=1

(
ϕiϕ

⊤
i ⊗ ϕiϕ

⊤
i

�(
ei ⊗ ej − ej ⊗ ei

�
=
XN

i=1

(
[ϕi]i[ϕi]j − [ϕi]i[ϕi]j

�
ϕi ⊗ ϕi = 0

where vec(eie
⊤
j − eje

⊤
i ) = vec(eie

⊤
j ) − vec(eje

⊤
i ) = ei ⊗

ej − ej ⊗ ei. Thus, vec(skew(Rn×n)) ⊆ null(Sϕϕ). Since
rank(Sϕϕ) = (n2 + n)/2 and vec(skew(Rn×n)) has di-
mension (n2 − n)/2, we can conclude vec(skew(Rn×n)) =
null(Sϕϕ).

Since ϕi ⊗ ϕi = vec(ϕiϕ
⊤
i ), we have Sϕϵ ∈

vec(sym(Rn×n)) is the vectorization of a symmetric ma-
trix. Furthermore, since null(Sϕϕ) = vec(skew(Rn×n)), the
Moore-Penrose pseudo-inverse S+

ϕϕ will map vectorization
of a symmetric matrices to vectorization of a symmetric
matrices. Thus, S+

ϕϕSϕϵ is the vectorization of a symmetric
matrix. Finally, we note that adding the vectorization of a
non-symmetric matrix N ∈ null(Sϕϕ) in (14) will break
symmetry. Thus, optimal solution of (12) is S+

ϕϕSϕϵ i.e. (11).
The consistency of the estimator follows from properties of
GMM [7].

D. Comparison with Existing R2R Controllers

In this section, we compare our R2R controller in Algo-
rithm 1 with existing R2R controllers from the literature.
As noted in the survey [2], most R2R controllers have the
following integral dynamics

ui+1 = ui + λµ+
b (r − yi) (15)

where µ+
b = µb/µ

⊤
b µb is the Moore-Penrose pseudo-inverse

and λ ∈ [0, 1] is a tuning parameter. See equation (16)
from [2] for details. We will show that our R2R controller
has integral dynamics (15) when the input constraints (6c)
are ignore, although with a novel pseudo-inverse. In contrast,
when the input constraints are ignore the integral dynamics
no longer apply.

Without the input constraints (6c), the Karush-Kuhn-
Tucker (KKT) optimality conditions are�

2Σbb µb

µ⊤
b 0

� �
u
ν

�
=

�
−2Σbc

r − µc

�
(16)

where ν ∈ R is the dual variable associated with the equality
constraint (6b). Solving (16) for u, we obtain the control-law

u = µ†
b(r − µc) +

1
2

(
I − µ†

bµ
⊤
b

�
Σ−1

bb Σbc (17)

where µ†
b = Σ−1

bb µb/(µ
⊤
bΣ

−1
bb µb) is an alternative pseudo-

inverse of µb i.e.

µ⊤
b µ

†
b = µ⊤

bΣ
−1
bb µb/(µ

⊤
bΣ

−1
bb µb) = 1.

This pseudo-inverse was derived from (6) to minimizes
the variance E[(y − r)2|u] of the material removal. Com-
bining (17) with the EWMA dynamics (7), we obtain the
following integral dynamics

ui+1 = ui + λµ†
b(r − yi) (18)



with the specific initial condition

u0 = µ†
b(r−µc0) +

1
2

(
I−µ†

bµ
⊤
b

�
Σ−1

bb Σbc.

This initial condition is important since otherwise the dy-
namic controller (18) would not include the second-term
which compensates for possible cross-correlation between
the model (4) parameters c and b. Note that our integral
dynamics (18) match the literature dynamics (15).

Next, we show our R2R Algorithm 1 does not necessarily
have literature dynamics (15) when the input constraints (6c)
are included. With the input constraints (6c), the KKT opti-
mality conditions for (6) are2Σbb µb H⊤

A
µ⊤
b 0 0

HA 0 0

 u
ν
λA

 =

−2Σbc

r − µc

hA

 (19)

where H and h are the half-space parameters of the input
constraints (2) and HA and hA are the rows corresponding
to the subset A of constraints that are active at the optimal.
The active dual variables are denoted by λA ≥ 0 where the
dual variable corresponding to inactive constraints are zero.
Through brute-force computation, we obtain

u = µ‡
b(r − µc) +

1
2

(
I − µ‡

bµ
⊤
b

�
(Σ−1

bb Σbc + ΓhA) (20)

where Γ = Σ−1
bb H⊤

A(HAΣ
−1
bb H⊤

A)
−1 and µ‡

b is yet another
pseudo-inverse of µb given by

µ‡
b =

(Σ−1
bb − Σ−1

bb H⊤
A(HAΣ

−1
bb H⊤

A)
−1HAΣ

−1
bb )µb

µ⊤
b (Σ

−1
bb − Σ−1

bb H⊤
A(HAΣ

−1
bb H⊤

A)
−1HAΣ

−1
bb )µb

.

Note that if (6) is feasible then µb does not lie in the
null-space of Σ−1

bb − Σ−1
bb H⊤

A(HAΣ
−1
bb H⊤

A)
−1HAΣ

−1
bb . This

follows from the fact that the active inequality constraints
cannot bind the equality constraint (6b).

Although (20) has a similar structure as (17), it cannot
necessarily be transformed into the integral-form (15). As
µc changes (7), the optimal active-set A can change. Thus,
the pseudo-inverse µ‡

b and matrix Γ are time-varying. Thus,
the nonlinear map provide by the optimization problem (6)
replaces rather than integrates (15) the control inputs. Note
that, although our R2R controller Algorithm 1 does not have
the integral dynamics (15), it is still dynamic due to the
EWMA dynamics (7).

Finally note that our R2R controller can be trivially put in
the general form ui+1 = αui + δui given by equation (17)
in [2] since any arbitrary feedback controller κ(x) can be
written in this form by defining δui = κ(x)− αui.

IV. NUMERICAL RESULTS

In this section, we present numerical results demonstrating
our R2R controller. First, we present results verifying our
stochastic model (4) of the material removal (1). Next,
we present simulation results that demonstrate our R2R
controller for an unknown static nonlinearity (1). Finally,
we present simulations results our R2R controller for the
stochastic model (4) where the parameters c and b are time-
varying with a Gaussian distribution.

Fig. 2. Fit of stochastic linear model (4) using historical data.

Throughout this section, we consider the MSS with 2 pads
to allow us to plot yi ∈ R1 versus ui ∈ R2.

A. Parameter Estimation and Model Validation

We use historical operational data to estimate the mean and
variance of the stochastic linear model (4). The historical
data was mined from multiple data files, which contain
the states of the system, inputs (polish times, RPM, pads
used) and outputs (microscope focus height). We utilize the
observations from the system plant which come in the form
of multiple data files, which contain the inputs (polish times,
RPM, pads used) and outputs (microscope focus height). We
developed an script that extracts this data from thousands
of separate text-files and collects the data into a unified
data set D = (Y,U) where U ∈ Rn×2 are the recipes and
Y ∈ Rn×1 are the resulting amounts of material removed.
When a slice is imaged, the focal height of the microscope is
recorded for each imagine in the montage. The average focal
height is then calculated and used to estimate the amount
of material removed for each slice. Microscope auto focus
errors can occur which will cause incorrect average focal
height readings which can lead to readings of negative or
minimal removal amounts. Therefore, the need to pre-process
the data by removing outliers is required. This includes
removing all data points associated with negative values.
Also, we compute a preliminary estimate of the mean and
variance of the parameters c and b. Any data-points yi =
c + b⊤ui outside of 3 standard deviations of the estimated
mean value yi = µc + µ⊤

b ui are removed.
Once pre-processing is complete, we use the historical data

to estimated the mean and variance of the parameters of the
stochastic model (4) using the GMM method described in
Section III-C. For the mean drift µc and mean slope µb,
the GMM estimator is equivalent to a least-squares estimator.
The curve-fit of the mean yi = µc + µ⊤

b ui of (4) is shown
in Fig. 2.

Fig. 2 shows that the available historical data is not very
exciting (in the sense of persistency of excitation). The expert
human operators tend to use a few different recipes and the



polish times are round numbers, typically multiples of 60
seconds. Indeed, the excitation of this input data ui is

σ

 
1

N

NX
i=1

uiu
⊤
i

u⊤
i ui

!
= 7773.5

where σ(·) is the smallest singular-value of a matrix. While
the low-level of excitation makes it difficult to accurately
estimate the parameters, it demonstrates the room for im-
provement through automation. The proposed R2R control
Algorithm 1 will not artificially restrict itself to a small num-
ber of recipes with round numbers. This greater flexibility
can potentially lead to improved performance. In future work,
we will consider active-learning/dual-control to produces
more exciting data for our data-driven R2R control design.

Fig. 2 shows that material removal yi is highly variable.
Even when the same recipe ui = u is used, the resulting
removal yi varies greatly. This is partially due to measure-
ment noise, but the hidden parameters di play a significant
role. Polishing a soft material will remove far more material
than polishing a hard material for the same amount of time.
Likewise, a fresh pad will remove material more quickly
than an old pad. This high variance of the material removal
shown in Fig. 2 motivates our decision to model the material
removal as stochastic (4). Furthermore, it motivates our
objective of finding recipes that minimize the variance in
the removal of material.

B. Simulation Results - Linear Model

In this section, we compare our R2R controller in Algo-
rithm 1 with the literature controller (15) using the Moore-
Penrose pseudo-inverse µ+

b = µb/µ
⊤
b µb of µb. We also

compare our controller without the input constraints (6c).
As we showing in Section III-D, without (6c) our controller
has the form (15) with the pseudo-inverse

µ†
b =

Σ−1
bb µb

µ⊤
bΣ

−1
bb µb

. (21)

For these simulation results, we model the removal func-
tion (1) as

yi = µc + µ⊤
b ui

where yi is the removal amount, µc is estimated variance of
the output, µb is the estimated variance of the inputs, and ui

is the inputs.
The simulation results are shown in Fig. 3. For each of

the 3 R2R algorithms we show the removal rate yi and the
recipe ui versus slice i. The desired removal rate is r = 10
microns.

Each of the R2R algorithms converged to the desired
removal rate yi → r after 14 slices. This is fast convergence
consider an experiment is typically comprised of hundreds
of slices. Furthermore a human operator can require up to
40 slices to find an appropriate recipe for a unique sample.
However, the two linear R2R controllers (15) with different
pseudo-inverses produced different recipes to achieve the
desired removal rate. In the next section, we will examine

4 8 12 16 20
0

4

8

12

Proposed w/o Constraints Literature

0

60

120

180

240

4 8 12 16 20
0

60

120

180

Proposed w/o Constraints Literature

Fig. 3. Simulation results comparing the proposed R2R control with and
without constraints with the literature R2R controller using the Moore-
Penrose pseudo-inverse.

the benefits of the pseudo-inverse (21).
Both linear R2R controllers (15) produced non imple-

mentable recipes. The literature R2R controllers computed
negative polishing times for one of the pads. The uncon-
strained variant of our controller produced excessively long
polishing times for one of the pads.

C. Robustness Simulations

In this section, we present simulation results that stress-
test the R2R algorithms. We modeled the material removal
function (1) using the linear model (4) with time-varying
parameters c and b. For each slice i, the parameters were
sampled from a Gaussian distribution�

c
b

�
∼ N

��
µc

µb

�
,

�
Σcc Σcb

Σbc Σbb

��
where the mean and variance were empirically estimated
using the method described in Section III-C. Our R2R
controller was compared with the literature controller (15)
using the Moore-Penrose pseudo-inverse.

The simulation results are shown in Fig. 4. The target
removal rate was r = 10 microns. For a fair comparison,
the sequence of parameters ci and bi was pre-computed so
that both algorithms had the same realizations of the random
variables.

As Fig. 4 shows, both R2R algorithms keep the average
removal rate E[yi] around the target removal rate. Indeed, our
R2R algorithm had an average removal rate of E[yi] = 9.98
whereas the literature algorithm had an average E[yi] = 9.99.

The advantage of our R2R controller is the reduction of
the variance of the removal rate V[yi]. The reduction in the
variance is apparent from Fig. 4. Indeed, the variance of the
removal rate for our algorithm was V[yi] = 3.33 whereas
the variance of the literature controller was V[yi] = 17.69.
Thus, for these simulation results, our controller reduces the
variance of the removal rate by 81%.
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Fig. 4. Comparison of R2R controllers for stochastic removal rates

V. CONCLUSION AND FUTURE WORK

We developed a R2R control Algorithm 1 to automate
MSS to reduce human intervention. Our R2R controller
solves a deterministic formulation (6) of a stochastic optimal
control problem (3) that minimizes the variance of the slice
thickness. We adopted a data-driven approach to synthesize
the R2R controller using historical operational data. We
demonstrated our R2R controller through simulation results.
We compared our R2R controller with a literature controller.
While our R2R controller had similar performance to the
state-of-the-art algorithm, the benefit of our approach is that
it generated physically implementable recipes. We further
demonstrated our R2R controller in stochastic simulations.
Our R2R controller reduced the variance by 81%.

Future work entails implementation into the physical to
ensuring all real errors were accounted for during simulation
and that the algorithm converges the real outputs of the
physical system. Improving the current model or creating
a more complex model of the system through methods such
as Gaussian Process Regression or ”Kriging” to increase the
accuracy of stochastic model.
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