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Wlth dynamic XRD (DXRD), we get a
microscopic insight into shock processes,

we can quantify the kinetics of shock-driven
phase transition at nanosecond scales
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" steady P & T state:

§ slowdown in 8-Zr growth
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Application? help in validating of kinetics’ models
for phase transitions in shock processes
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DXRD & Shock compression at DCS, APS - ANL —I-(D

—
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All about

2. XRD & Static compression at HPCAT, APS - ANL " experiments ﬁ
3. CaF, structures and phase diagram

2 P g Phase transition
4. Real-time DXRD probe of a single-step shock event in CaF, kinetics in a

simple ionic solid

5. Kinetics of formation of tetragonal CaF, under shock compression P
6. Zirconium structures and phase diagram
/. Real-time DXRD probe of a multi-step shock/release process in Zr E?naesgctsr?:s;tlon
8. Kinetics of formation of -Zirconium under shock compression metal
9.

Summary & Takeaways
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Advanced Photon Source, ANL: DCS and HPCAT CaF, phase diagram

CaF,: DXRD and simple shock event
CaF, & shock: kinetics of phase transition
Zr: phase diagram

Zr: DXRD and multi-shock-release process
Zr & shock: kinetics of formation of B-Zr
Takeaways

« 3" generation synchrotron
source

* 1,104m = 3,622 ft. w
X-rays ON 24h/day

« 6 days/week

Argonnea

NATIONAL LABORATORY

- O o g

Advanced Photon Sourée Image Bank (aps.anl.gov)
DXRD: dynamic x-ray diffraction
DAC: diamond anvil cell

X-rays every 154 ns that
last for ~100ps

Dr. Patricia Kalita, SNL



. . . XRD and static compression at APS - ANL
Dynamic XRD and Shock compression experiments R —

6 CaF,: DXRD and simple shock event
:'Ishéckl R — Imlealsﬁreldl - CaF, & shock: kinetics of phase transition
168 ns | modelled 4 Zr: phase diagram

ar : o, 1 Zr: DXRD and multi-shock-release process
St W] b: 84 wt.% ’ Zr & shock: kinetics of formation of B-Zr
St e 16wt% ’ Takeaways
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1 1 P 1.  DXRD and shock i t APS - ANL
A steady stress state & kinetics of phase transitions: [; SC otk compresan @ |
, | DXRD & single-step shock event i
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. . .. 1. DXRD and shock compression at APS - ANL
A steady stress state & kinetics of phase transitions: [2
g | DXRD & a multi-shock-release process ;
5.
6
7
[ 8
9.
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» Steady, well defined P & T state
» Great for quantitative XRD analysis
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DXRD and shock compression at APS - ANL

Companion experiments: ST
. ° r ] ] ]n i
o | static DAC compression & XRD esistive heating CaF, phase diagram

CaF,: DXRD and simple shock event
CaF, & shock: kinetics of phase transition
Area Detector: Diamond Anvil Cell Zr: phase diagram

. Zr: DXRD and multi-shock-release process
CCD Pilatus detector Zr & shock: kinetics of formation of B-Zr

Takeaways

beam stop

Synchrotron x-ray beam

% | \ — micro-focusing optics

| \ monochromatic
/] ’ synchrotron
//]. / X-ray beam

I
(I

DIAMONDS
A Rietveld structural _
, refinements o
3 |5 Background 1 ER
- et P  i|—— difference | o
- 93 96 99 102 - z !
3 [
Ll = =
| | | I T s
| | | (d)l‘ :C)
TR S Pressure (GPa)
10 12 14 16 A

Dr. Patricia Kalita, SNL

angle 20 (deq.)



10 I OQutline

DXRD & Shock compression at APS - ANL —I-D
XRD & Static compression at APS - ANL %

CaF, structures and phase diagram

Real-time DXRD probe of a single-step shock event in CaF,

b DN W N =

Dr. Patricia Kalita, SNL

Kinetics of formation of tetragonal CaF, under shock compression

DXRD and shock compression at APS - ANL
XRD and static compression at APS - ANL
CaF, phase diagram

CaF,: DXRD and simple shock event

CaF, & shock: kinetics of phase transition

Zr: phase diagram

Zr: DXRD and multi-shock/release process
Zr & shock: kinetics of formation of B-Zr
Takeaways

Phase transition
— kinetics in a
simple ionic solid




.1 | Single-step shock compression of CaF,

« part of a larger project on X
shock/ramp/static loading behavior of CaF, %

» limited Hugoniot data above 30 GPa Ea

» high pressure Hugoniot phase (solid or melt)
undetermined

« extended phase diagram undetermined

« previous shock compression: continuum
scale velocimetry & inferred phase
transition

« static compression: at least 2 solid - solid
pressure-driven phase transitions

Errandonea, PRL 113, 235902 (2014)
Cazorla, PRL 113, 235902 (2014)
Dorfman et al., Phys. Rev. B 81, 174121 (2010)

Dr. Patricia Kalita, SNL
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Shock-driven phase transition at atomic and

12 nanosecond Scales In CaFZ CaF,: DXRD and simple shock event

L
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DXRD analysis

at late times > 140 ns material is
subjected to distribution of pressures
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XRD-3 o~ 13 GPa t=370ns
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» reversible transition
» hysteresis on stress release




Quantitative DXRD analysis: kinetics of shock-

14 | driven phase transition
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CaF, & shock: kinetics of phase transition

L
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1. DXRD & Shock compression at APS - ANL —I-(D
XRD & Static compression at APS - ANL %

CaF, structures and phase diagram

Real-time DXRD probe of a simple shock event in CaF,

Zirconium structures and phase diagram

Real-time DXRD probe of a multi-shock-release process in Zr

0O NN O U1 AN W N

Kinetics of formation of 8-Zirconium under shock compression

Dr. Patricia Kalita, SNL

Kinetics of formation of tetragonal CaF, under shock compression

S

6. Zr: phase diagram

7. Zr: DXRD and multi-shock-release process
8. Zr & shock: kinetics of formation of B-Zr
9.

Phase transition
kinetics in a
simple ionic
solid

Phase transition
kinetics in a
metal



Multiple shock-and-release experiment in Zr

16

o Bridgman discovered the w phase in 1952 [

o a lot of studies on « (hcp) 2 w (hexagonal)

o o (hexagonal) = B (cubic) transition discovered

in 1990 [2]

o B phase is less studied

this work:

- quantify the kinetics of formation of the
B-Zr phase under shock compression

[1P, W. Bridgman, PNAAS 81, 165 (1952).
[21H, Xia, S. J. Duclos, A. L. Ruoff, and Y. K. Vohra, PRL
64, 204 (1990).

phase diagram after: C. W. Greeff, Modelling and
Simulation in Materials Sci. & Engi. 13, 1015 (2005).

Dr. Patricia Kalita, SNL
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Zr: multi shock-release wwof g¥iof mSRladngpeinvay 4
18 | process: DXRD at N '
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Quantifying the kinetics of 3-Zr
under shock compression

" steady P & T state:
slowdown in 5-Zr growth

mSR loading: fast 5 growth

@ P -phase % ]
best: 7=0, N=0.493, k=0.023| ]
95% confidence band

KJMA Model
of kinetics

10 |

ettt
I ! ! I I __960A
| €
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] 2
1800 %
| E
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Zr & shock: kinetics of formation of B-Zr

short incubation time t~0 ns and ~250 ns needed to

complete the transition

atomic displacement during transition requires tens of ns

to complete the process

the applicability of the KJMA formalism for describing of

polymorphic transitions under shock compression must be

approached carefully, since it was developed for

transformations between isotropic phases with a small

volume jump and a zero shear modulus.

incubation time

.
B(t) =1 — exp(—(E(t —@)

crystallization rateI

®
¥

)

Avrami
parameter



@ o-Phase%
= best: =36.34, N=0.19, k=0.00029
bounding fits:
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* both projects show that we can use DXRD to follow
the unfolding of phase transitions during different
shock events
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XRD phase fraction of counnite (wt.%)

* both projects show that we can use quantitative

©
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analysis of DXRD patterns to put numbers on how fast T e TR
a phase transition unfolds during a shock event . time (ns)
: : : “F=W<"""" steadyP&T state:
-+ first experimental evidence that, at tens of ol slowdown in BZr growth

nanoseconds, intermediate states are irrelevant in
shock compression: the Hugoniot truly is a locus of
end states, which only depend on the initial state
and the shock strength
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mSR loading: fast

* Outlook: there is a need to develop models of
kinetics of phase transition specifically for shock
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23 I 1-D Shock Compression Wave

* Instantaneous discontinuity in P, E, p
» High strain rate

* Energy scattering

» Shear forces

* Puts energy into atoms and molecules
» Creates defects (increases entropy)

Shock
front

\ 4

time
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at do we get out?

* very high pressure thermodynamic P-v curve - Hugoniot EOS

--“test of ancuracy of molecular potentials over large compression

wrth dynamlc XRD, we get a microscopic insight into shock
"~ processes,
* We can quantify the kinetics of shock-driven phase transition

at nanosecond scales




	Hurry up or take your time: �kinetics of shock-driven phase transitions and dynamic x-ray diffraction
	In collaboration with the following awesome scientists:
	Preview…
	Outline
	Advanced Photon Source, ANL: DCS and HPCAT
	Dynamic XRD and Shock compression experiments
	A steady stress state & kinetics of phase transitions:�DXRD & single-step shock event
	A steady stress state & kinetics of phase transitions:�DXRD & a multi-shock-release process
	Companion experiments:�static DAC compression & XRD
	Outline
	Single-step shock compression of CaF2
	Shock-driven phase transition at atomic and nanosecond scales in CaF2
	DXRD analysis
	Quantitative DXRD analysis: kinetics of shock-driven phase transition
	Outline
	Multiple shock-and-release experiment in Zr 
	Zr: Static Compression XRD in DAC at high T
	Zr: multi shock-release process: DXRD at nanosecond scale
	Quantifying the kinetics of β-Zr under shock compression
	Takeaways
	Acknowledgements!
	Slide Number 22
	1-D Shock Compression Wave

