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steady P & T  state: 
slowdown in β-Zr growth

Preview…
• with dynamic XRD (DXRD), we get a 

microscopic insight into shock processes, 
• we can quantify the kinetics of shock-driven 

phase transition at nanosecond scales
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Application? help in validating of kinetics’ models 
for phase transitions in shock processes



1. DXRD & Shock compression at DCS, APS – ANL

2. XRD & Static compression at HPCAT, APS – ANL

3. CaF2 structures and phase diagram

4. Real-time DXRD probe of a single-step shock event in CaF2

5. Kinetics of formation of tetragonal CaF2 under shock compression

6. Zirconium structures and phase diagram

7. Real-time DXRD probe of a multi-step shock/release process in Zr

8. Kinetics of formation of β-Zirconium under shock compression

9. Summary & Takeaways

Outline

1. DXRD and shock compression at APS – ANL
2. XRD and static compression at APS – ANL
3. CaF2 phase diagram
4. CaF2: DXRD and simple shock event
5. CaF2 & shock: kinetics of phase transition
6. Zr: phase diagram
7. Zr: DXRD and multi-shock/release process
8. Zr & shock: kinetics of formation of β-Zr
9. Takeaways 

Phase transition 
kinetics in a 
simple ionic solid

Phase transition 
kinetics in a 
metal
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All about 
experiments



Advanced Photon Source, ANL: DCS and HPCAT

Advanced Photon Source Image Bank (aps.anl.gov)

• 3rd generation synchrotron 
source

• 1,104m = 3,622 ft.
• X-rays ON 24h/day
• 6 days/week

Sector 35
DCS

Sector 16
HPCAT

X-rays every 154 ns that 
last for ~100ps

e-

1. Zirconium structures and phase diagram
2. shock and static compression at APS – ANL
3. dynamic vs static XRD
4. kinetics of formation of β-Zirconium

1. DXRD and shock compression at APS – ANL
2. XRD and static compression at APS – ANL
3. CaF2 phase diagram
4. CaF2: DXRD and simple shock event
5. CaF2 & shock: kinetics of phase transition
6. Zr: phase diagram
7. Zr: DXRD and multi-shock-release process
8. Zr & shock: kinetics of formation of β-Zr
9. Takeaways 
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DXRD: dynamic x-ray diffraction
DAC: diamond anvil cell



Dynamic XRD and Shock compression experiments

Dynamic XRD at DCS, 
APS, ANL

XRD detector
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A steady stress state & kinetics of phase transitions:
DXRD & single-step shock event

Lexan 
Impactor

PDV

TPXCaF2

PDV

PDV

X-ray Path
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A steady stress state & kinetics of phase transitions:
DXRD & a multi-shock-release process
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• Steady, well defined P & T state
• Great for quantitative XRD analysis

Lexan 
impactor

TPX window

thin Zr sample

PDV

X-ray Path
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3. CaF2 phase diagram
4. CaF2: DXRD and simple shock event
5. CaF2 & shock: kinetics of phase transition
6. Zr: phase diagram
7. Zr: DXRD and multi-shock-release process
8. Zr & shock: kinetics of formation of β-Zr
9. Takeaways 
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Companion experiments:
static DAC compression & XRD
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5. CaF2 & shock: kinetics of phase transition
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8. Zr & shock: kinetics of formation of β-Zr
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1. DXRD & Shock compression at APS – ANL

2. XRD & Static compression at APS – ANL

3. CaF2 structures and phase diagram

4. Real-time DXRD probe of a single-step shock event in CaF2

5. Kinetics of formation of tetragonal CaF2 under shock compression

Outline

1. DXRD and shock compression at APS – ANL
2. XRD and static compression at APS – ANL
3. CaF2 phase diagram
4. CaF2: DXRD and simple shock event
5. CaF2 & shock: kinetics of phase transition
6. Zr: phase diagram
7. Zr: DXRD and multi-shock/release process
8. Zr & shock: kinetics of formation of β-Zr
9. Takeaways 

Phase transition 
kinetics in a 
simple ionic solid
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Single-step shock compression of CaF2

• part of a larger project on 
shock/ramp/static loading behavior of CaF2

• limited Hugoniot data above 30 GPa 
• high pressure Hugoniot phase (solid or melt) 

undetermined
• extended phase diagram undetermined
• previous shock compression: continuum 

scale velocimetry & inferred phase 
transition 

• static compression: at least 2 solid  solid

pressure-driven phase transitions 

Errandonea, PRL 113, 235902 (2014)
Cazorla, PRL 113, 235902 (2014)
Dorfman et al., Phys. Rev. B 81, 174121 (2010)
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static XRD – DAC & heating
DXRD

P~8 GPa: simple compression
DXRD

P~23 GPa: shock-driven phase

1. DXRD and shock compression at APS – ANL
2. XRD and static compression at APS – ANL
3. CaF2 phase diagram
4. CaF2: DXRD and simple shock event
5. CaF2 & shock: kinetics of phase transition
6. Zr: phase diagram
7. Zr: DXRD and multi-shock-release process
8. Zr & shock: kinetics of formation of β-Zr
9. Takeaways 

Shock-driven phase transition at atomic and 
nanosecond scales in CaF2
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DXRD analysis

at late times > 140 ns material is 
subjected to distribution of pressures

• complete phase transition 
fluorite  cotunnite
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Quantitative DXRD analysis: kinetics of shock-
driven phase transition

1. DXRD and shock compression at APS – ANL
2. XRD and static compression at APS – ANL
3. CaF2 phase diagram
4. CaF2: DXRD and simple shock event
5. CaF2 & shock: kinetics of phase transition
6. Zr: phase diagram
7. Zr: DXRD and multi-shock-release process
8. Zr & shock: kinetics of formation of β-Zr
9. Takeaways 
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1. DXRD & Shock compression at APS – ANL

2. XRD & Static compression at APS – ANL

3. CaF2 structures and phase diagram

4. Real-time DXRD probe of a simple shock event in CaF2

5. Kinetics of formation of tetragonal CaF2 under shock compression

6. Zirconium structures and phase diagram

7. Real-time DXRD probe of a multi-shock-release process in Zr

8. Kinetics of formation of β-Zirconium under shock compression

Outline

1. DXRD and shock compression at APS – ANL
2. XRD and static compression at APS – ANL
3. CaF2 phase diagram
4. CaF2: DXRD and simple shock event
5. CaF2 & shock: kinetics of phase transition
6. Zr: phase diagram
7. Zr: DXRD and multi-shock-release process
8. Zr & shock: kinetics of formation of β-Zr
9. Takeaways 
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Multiple shock-and-release experiment in Zr 

[1] P. W. Bridgman, PNAAS 81, 165 (1952).
[2] H. Xia, S. J. Duclos, A. L. Ruoff, and Y. K. Vohra, PRL 
64, 204 (1990).

phase diagram after: C. W. Greeff, Modelling and 
Simulation in Materials Sci. & Engi. 13, 1015 (2005).

this work: 

 quantify the kinetics of formation of the  
β-Zr phase under shock compression

o Bridgman discovered the ω phase in 1952 [1]

o a lot of studies on α (hcp)  ω (hexagonal)

o ω (hexagonal)  β (cubic) transition discovered 
in 1990 [2]

o β phase is less studied

Dr. Patricia Kalita, SNL
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4. CaF2: DXRD and simple shock event
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Quantifying the kinetics of β-Zr 
under shock compression

KJMA Model 
of kinetics

Avrami 
parameter

• short incubation time τ~0 ns and ~250 ns needed to 
complete the transition

• atomic displacement during transition requires tens of ns 
to complete the process

• the applicability of the KJMA formalism for describing of 
polymorphic transitions under shock compression must be 
approached carefully, since it was developed for 
transformations between isotropic phases with a small 
volume jump and a zero shear modulus.

incubation time

crystallization rate
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Takeaways

• both projects show that we can use DXRD to follow 
the unfolding of phase transitions during different 
shock events

• both projects show that we can use quantitative 
analysis of DXRD patterns to put numbers on how fast 
a phase transition unfolds during a shock event

• first experimental evidence that, at tens of 
nanoseconds, intermediate states are irrelevant in 
shock compression: the Hugoniot truly is a locus of 
end states, which only depend on the initial state 
and the shock strength

• Outlook: there is a need to develop models of 
kinetics of phase transition specifically for shock 
processes 

• Outlook: now we are able to use DXRD to generate 
atomic-scale time-resolved experimental data to 
validate such models 
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1-D Shock Compression Wave

• Instantaneous discontinuity in P, E, ρ
• High strain rate
• Energy scattering 
• Shear forces
• Puts energy into atoms and molecules
• Creates defects (increases entropy)

• with dynamic XRD, we get a microscopic insight into shock 
processes, 

• We can quantify the kinetics of shock-driven phase transition 
at nanosecond scales

P

time

Shock 
front

What do we get out?
• very high pressure thermodynamic P-v curve – Hugoniot EOS
• test of accuracy of molecular potentials over large compression

P

V
T
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