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Motivation – Understanding and Modeling 
Thermal Decomposition in Solids

§ Thermal decomposition of energetics is a physically and 
chemically complex process
§ Complex chemistry
§ Physical effects – defects, phase changes, etc.

§ One of the greatest challenges in EM science:  
Predictive modeling of cook-off
§ Multicomponent systems (formulations)
§ Multiple length scales
§ Plus chemistry and physics

§ Even pure materials are challenging
§ Particularly solids
§ Classic example – ammonium perchlorate LTD
§ Defects drive chemistry – a “hidden variable” that turns a challenging 

problem into a mystery
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Thermal Decomposition in Solids

§ What makes solids difficult?

§ Decomposition of solids at low temperatures is often 
inhomogeneous
§ Decomposition begins at localized sites
§ Often driven by defects
§ Defects can be difficult to quantify
§ Defects initiate chemistry in ways that are hard to interrogate
§ Decomposition chemistry in materials of interest is often 

complex/multi-step
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Example – AP LTD

§ Ammonium perchlorate low-temperature decomposition 
is an interesting example in SSD
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NH!ClO! s ↔ NH3 g + HClO4 g

NH!ClO! s → H(O(g) + O((g) + N(O(g) + Cl((g) +
N((g) + NO(g) + 	NO((g) + ClO((g)



Example – AP LTD
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Thermogravimetry data on 
200 µm AP powder, 190oC 
isothermal for ~35 hours

Induction Acceleratory



Example – AP LTD
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Decomposition 
kinetics depends on 
confinement, particle 
size, impurities, etc.

Minier and Behrens, CPIA Publication 
691, 626 (1999)
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Example – AP LTD

§ Reacts by nucleation, growth, and interfacial advance 
process
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Kraeutle, J. Phys. Chem. 74, 1350 (1970)



Defects in Solids
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§ Defects are often more important in properties of solids 
than the lattice itself
§ Mechanical properties

§ Flexibility
§ Ductility
§ Hardness
§ Fatigue

§ Electronic properties
§ Band structure
§ Conductivity
§ Optical properties – lasers

§ Properties of solids are often manipulated by changing defect 
profile of material
§ Mechanical working
§ Thermal treatment (annealing, quenching)
§ Doping



Defects in Solids
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§ Come in several varieties:
§ Point defects (0D)

§ Lattice vacancies
§ Interstitial substitutions
§ Substitutional defects

§ Line defects (1D)
§ Dislocations

§ Planar defects (2D)
§ Grain boundaries
§ Stacking faults
§ Surfaces

§ Volume defects (3D)
§ Voids
§ Inclusions
§ Impurity clusters

Interstitial defect,
Lattice vacancy (0D)

Edge dislocation (1D)

Screw dislocation (1D)

Grain boundary (1D)

R. Tilley, Defects in Solids, Wiley (2008)



Motion of Defects
§ Defects can also move, and their motion is important in 

dynamic processes and material processing
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R. Tilley, Defects in Solids, Wiley (2008) www.nde-ed.org

Thermal 
motion of 

point defect

Motion of dislocation:
Mechanical -> Stress annealing
Thermal -> Thermal annealing



Observing Defects
§ How can we observe/quantify defects?
§ Point defects

§ Conductivity measurements
§ Photoluminescence

§ Extended defects (dislocations, grain boundaries)
§ Etching and scanning electron microscopy (SEM)
§ Scanning tunneling microscopy (STM)
§ Tunneling electron microscopy (TEM)
§ X-ray diffraction (quantification of microstrain)

11R. Tilley, Defects in Solids, Wiley (2008)

STM of 
dislocation 

in CdTe

Herley and Levy, J. Chem. Soc. A 434 (1971)

SEM of 
etched AP



Defects and Chemistry
§ Defects alter the local environment in the crystal

§ Orientational changes (different relative geometry of molecules)
§ Volumetric changes (more room for molecular motion)
§ Electronic changes (variations in local electronic structure)

§ These change the local effective activation energy

12

Herley and Levy, J. Chem. Soc. A 434 (1971)

Nuclei from thermal 
decomposition of AP

Herley and Levy, Proc. Roy. Soc. A 318, 197 (1971)

Nuclei from etching AP



Defects and Kinetics – Nucleation 
§ What do we know about the kinetics of solid decomposition in solids?
§ Nucleation is the formation of discrete product sites in solid
§ Many types depending on chemistry:

§ Single-step
§ One-step reaction establishes nucleus

§ Instantaneous
§ Fast; all nuclei are formed at onset of reaction

§ Linear
§ Slow; concentration of nuclei linear in time

§ Multi-step
§ Requires multiple steps; power law behavior

§ Branching
§ Each nucleus creates more nuclei.  Exponential
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c face of AP crystal 
showing nuclei; Herley

and Levy (1970)

** Discussion of kinetics derived from Galwey and Brown, “Thermal 
Decomposition of Ionic Solids”, Elsevier (1999)



Defects and Kinetics – Nucleation 

§ Accordingly, rate laws are different:

§ Exponential

§ Linear

§ Instantaneous

§ Power Law

§ Branching
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘2𝑁𝑁3exp −𝑘𝑘2𝑡𝑡

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘2𝑁𝑁3

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = ∞

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐶𝐶𝑡𝑡;<=

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘2𝑁𝑁3exp 𝑘𝑘> − 𝑘𝑘? 𝑡𝑡

N0:  Number of potential reaction sites
kN:  Nucleation rate constant
kB:  Branching rate constant
kT:  Termination rate constant
η:   # of steps in reaction



Defects and Kinetics – Growth of Nuclei

§ Nuclei grow, forming a reaction interface
§ Rates of interface advance are usually constant:

§ Growth may be 1, 2, or 3 dimensional.
§ Combining nucleation and growth rates enables 

development of rate laws for reaction.
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘A 𝑡𝑡 − 𝑡𝑡3



Solid State Decomposition Models –
Geometric Effects

§ Geometry plays an important role in SSD
§ Single crystals vs. powders, etc. 

§ How does reaction advance?
§ Contracting volume

§ Cube/rectangle/sphere
§ Rapid nucleation on all surfaces

§ Contracting area 
§ Cylinder/rectangle/disc
§ Rapid nucleation on specific surfaces
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𝛼𝛼 = 𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑎𝑎 − 2𝑘𝑘G𝑡𝑡 𝑏𝑏 − 2𝑘𝑘H𝑡𝑡 𝑐𝑐 − 2𝑘𝑘I𝑡𝑡

1 − 1 − 𝛼𝛼
=
K = 𝑘𝑘𝑘𝑘



Solid State Decomposition Models –
Diffusion and Particle Size Effects

§ Several expressions developed for diffusion

§ Can also develop expressions for particle size effects:
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𝛼𝛼 = 𝑘𝑘L𝑡𝑡 =/( (Parabolic law)

𝛼𝛼 = 𝑘𝑘=ln 𝑘𝑘(𝑡𝑡 + 𝑘𝑘O =/( (Logarithmic law)
𝛼𝛼 = 𝑘𝑘=𝑡𝑡 + 𝑘𝑘(	(Linear	law)

𝛼𝛼 𝑡𝑡, 𝑎𝑎 = 1 − 1 − 𝑡𝑡/ 𝜌𝜌𝑎𝑎/𝑘𝑘 O

Particles of radius a with interface rate k/𝜌𝜌



Current Work on AP

§ How can we use all of this to our advantage?

§ Quantify defects in AP samples
§ Single crystals
§ Powders
§ Recrystallized powders

§ Quantify dislocation densities using XRD
§ Dislocation densities can be calculated from XRD parameters1:
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𝜀𝜀 is lattice strain, b is magnitude of Burgers vector, D is crystallite size

1 Yang, et al., Acta Materialia 82, 41 (2015)



Current Work on AP

§ Dislocation densities can be correlated with 
decomposition kinetics
§ Length of induction period and kinetics
§ Density of nuclei as a function of time (SEM)
§ Characteristics of acceleratory period (length, product spectrum) 

from thermogravimetry and mass spectrometry (STMBMS)
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SEM of nuclei
Herley and Levy (1970)

Thermogravimetry data
(STMBMS)

Product rates
(STMBMS)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =	?



Current Work on AP

§ Work on aged samples
§ 20-year-old naturally-aged AP powders

§ Defect quantification
§ Decomposition kinetics 
§ What are effects of aging?

§ Thermal annealing
§ How does heating alter dislocation densities?
§ Heat samples, quantify with XRD, observe decomposition 

kinetics
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