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Next-gen energy conversion & storage rh) o

Anode: 2H, +40H™ — 4H,0 + 4e” @
Cathode: 0, +2H,0 + 4~ — 40H~ (2)
O‘u’era”: ZHZ + 02 b ZHzo
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@ Hydrogen oxidation/ evolution (HOR/ HER) @ Oxygen reduction/ evolution (ORR/ OER)




Manganese oxide for the ORR )

Intrinsic

Oxygen reduction (ORR)
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Manganese oxide for the ORR

Oxygen reduction (ORR)

ORR

0, + 2H,0 + 4e~ __ 40H"

OER

E° = 4+ 1.23Vvs.RHE

Commercial catalyst materials: Pt, Pt/C ($$)

(i) Direct four electron pathway:
O2 + 2H20 + 4e--> 40H-

(ii) Indirect (peroxide) pathway:
O2 + H20 + 2e > OH + HO>

followed by either

(ii-a) the further reduction of peroxide:
HO2 + H20 + 2e> 3 OH-

(ii-b) the catalytic peroxide decomposition:
HO2 > 2 O2+ OH-
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Manganese oxide for the ORR
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Particle size/morphology effects: I e o
—— nanowires * ORR activity increases
. —— nanospheras .
—— _ D it st with BET surface area
Bulk particles Nanowires Nanospheres Bal .
B _ S » Decrease in current
Fe” &l =2 without carbon
| . ﬂ -3t 2500 rpm
200 & ...J-""ﬁ_ur_m . o -4k
7.9 m?/g 32.9 m?/g 40.1 m?/g 0.6 ?Et :lg.; i 0.0 0.2 F. Cheng et al. Chem. Mater. 2010, 22, 898-905
Vs, g
. . . E /Vvs. RHE 0.5
Phase-dependent activity: _ o7 o8 09 0ol Y-MNO, l d
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o 02l 1.0}
«  ORR activity increases P l E c
with average Mn valence S =St . 1600 rpm
¢ o most active phase of o4 20F _ _
L . 06 04 -02 00 02
MnO, . @) E/V vs. Ag/AgC

a-MnO, > 3-MnO,, > y-MnO,,

F. Cheng et al. Chem. Mater. 2010, 22, 898—905

MnO, ~ MnOOH > Mn,O, > Mn,;0,

Tang et al. ACS Catal. 2014, 4 (2), pp 457 - 463

Further modification:
substitutional doping to tune valence?

interparticle contact resistance in nanostructures?
I —————




a-MnO, nanowires and cation doping rh)
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Effects of Cu-doping on crystal structure rh) s

e
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Tunable Cu doping demonstrated by | s
changing precursor ratios (Cu?* : Mn?*) £-0.0015 | 0% Cu |

he]
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MnOg polyhedra Potential (V vs. Ag/AgCl)

* Bond Lengths (higher covalency)
Cu 2.9-a-Mn0, (1.900 + 0.010 A)
a=9.8A a-MnO, (1.915 + 0.035 A)

* Lattice volume (/attice expansion)
Cu 2.9-a-MnO, (278.12 A3)
a-MnO, (276.45 A3)

Hollandite (a-MnQO,)
Cryptomellane (a-MnO, w/ K* in channels) . Crystallite size (more edge defects)
Tetragonal Cu 2.9-a-MnO, (16 nm)
2 x 2 channels a-MnO, (36 nm)




Electronic effect: Importance of Mn?3*
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Electronic effect: Importance of Mn?3*

Tunable Ni doping also demonstrated from
precursor ratios (Ni%* : Mn?*)
— 0 —5 % bulk Ni, 0 — 0.6 % surface Ni
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Conductive polymer hybrids: PEDOT rh)

)
P E = ’ E > : Mni"MnvIO, .,
Hydrous = = KMn™10, .o,

MnoO, 0

« PEDOT
— —_—

AE,, = 0.75 V vs. SCE

4

« SDS + LiCIO,-3H,0 * EDOT » Mn{OAc),

0 C T T T T T T T
200 | == 20% PUC (MQyoa)
PEDOT === 20% Pt/IC {mgzﬁl}
04l == P-MnO,-20 (Mgota™")
o x ~ ol *** P-MnO20 (mgw,") |
“-‘E n = 3.68 ‘o . e
: 08 | E === = :r:','
E 20% Pt/C "E 200 |
3 n=3.98 S
=~ a2) =~
MnO,/PEDOT -400
n=3.92 )
1.6 eeeearinnest
P ST -600 - ' - . .
03 04 05 06 07 08 09 1 04 05 06 07 08 09 1
E (V vs. RHE) E (V vs. RHE)
Synergistic activity of PEDOT/MnO,: increased n value

intrinsic ORR potentials shift by >0.2 V
decreased ORR charge transfer resistance
intimate polymer/active site contact



Bifunctional Ni,Co, O, for ORR/OER i) i

Laboratories

[ Ni(NO,), ]
Co{NO);, NaNO;,
OR —} _—_—— —:" -
ﬁ a-ColOH); Isubstrate Coz0y /substrate
Mi Ti [ Ni-a-Co(OH),/substrate ] [ Ni,Co,. x04lsubstrate]

0 = —" eSS
4l ORR: 0, + 2H,0 + 4e~ — 40H"™
T [
< -2F Bifunctional Catalyst SB:T ORR: ORR
e Ni,C0;,0, loading : ace E(V) at Onset
S (mg cm?) zrez: I=-3 mA cm? (V)
> -3 (m2g™)
=
(/)]
c Ni foil 1:0.25 Ni,Co,,,0, 0.127 99.8 0.79 0.88
o 4
O 20% Ir/C NiCo.0. Soinel
- ] 1£020, Spine ND 124 0.75 0.84
5 -5 C0304 __ NWAs(!!
h L
S . 20% Pt/C " NiCo.0
6 [ ] esoporous Tt 0,04 0.407 77 0.55 0.86
& 61 1:0.25 Ni,Co, .0, | /Graphene [
_ 1 1

014 015 016 0:7 0:8 0:9 1 1.1
Potential (V vs. RHE) 14




| ] | [ ] [ ] Sa d-
Bifunctional Ni,Co, O, nanostructured films for (f)m
the ORR and OER i

Au [ Ni(NO,), ] TR |
Co[NO);, NaNO, a b »
OR —; T ————— o ‘g
[~ a-Co{OH); Isubstrate Cos0/substrate L = ”
Mi Ti [ Ni-a-Co(OH),/substrate ] [ Ni,Co,,0O,/substrate] g -
10 T T T T T / T
& | 1:0.25 Ni,Co,,0, : OER: 40H™ — 0, +2H,0 + 4e™
g 8| co0, -
g Ni foil Bifunctional Catalyst SuBrIfE:ce EO(\I?)R:t OER
i i - a
= g 20%1IrC i o0 e ey Jrem |10 maom e
o L 20% Pt/IC
/)]
c 5 1:0.25 Ni,Co, 0, 0.127 99.8 1.75 1.59
QD N
u 4 B . -
‘E N'c;ﬁz\:ﬁ'"e' ND 124 1.72 1.65
@ i
- 2| _
3 - Mes;’gg:::n':'gfzo‘ 0.407 77 1.69 1.6
1 1.2 1.4 1.6 1.8 2
Potential (V vs. RHE) s




Bifunctional Ni,Co, O, nanostructured films for ()i
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Bifunctional CoP nanostructured films for the ) b
HER and OER
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Bifunctional CoP nanostructured films for the ) b
HER and OER

Au
Co[NO,);, NaNO; A NaH,PO,, &
oR — L —
- a-Co(OH), /substrate 0,0, Isubstrate CoP fsubstrate
Mi Ti
20 T I I | I
CoPINi
CoP/A
ot OER: 40H- — 0, +2H,0 + 4e"
15 | CoP/Ti
& 20% PUC  Early OER onset
5
< 10  Excellent stability: < 5% loss in
E activity after two hours at OER
___g’a potential
5
0 | 1
1 1.2 1.4 1.6 1.8 2
E (V vs. RHE) 18



Bifunctional CoP nanostructured films for the ) b
HER and OER
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Conclusions and future work )
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* Electrodeposition is an extremely versatile method with many applications in
energy devices and electrocatalysis.
* Electrodeposited electrocatalysts exhibit key advantages over particle

synthe3|s for both fundamental studles and scalable dewce integration.

. EIectrodeposﬂed nanostructured fllms of MnO /PEDOT N|Co3 0,4, and CoP
proved to be highly active electrocatalysts for the ORR, ORR/OER, and
HER/OER, respectively.

* Future work will be undertaken to further improve these three systems,
investigate device integration, and identify new materials to be

electrodeposited with potential as active electrocatalysts. 20
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Electrocatalysis in energy devices rh) i
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Alkaline fuel cell:

Anode: 2H, + 40H™ — 4H,0 + 4e~
Cathode: 0, + 2H,0 + 4e~ — 40H™ Oxygen Reduction Reaction
(ORR)
Overall: 2H, + 0, — 2H,0
Fuel cell schematic
Secondary metal-air battery (e.g. Zn-air):
s == = N:;&U:on Discharge Anode: 2Zng) — 2Zn** + 4e”
K rubporone Cathode: 0, + 2H,0 + 4e~ — 40H™ ORR
[ Overall: 2Zn5) + 0 + 2H,0 - 2Zn** + 40H"™
|8 8P woes  Charge  Anode:  2Zn2* + de” — 2Zn s
Zn-air battery schematic Cathode: 40H™ — 0, +2H,0 + 4e~ Oxygen Evolution Reaction
(OER)
Overall:  2Zn** + 40H™ = 2Zn5 + 0, + 2H,0
Alkaline Electrolyzer:
Anode: 40H™ — 0, +2H,0 + 4e~ OER
Cathode: 4H,0 + 4e~ — 2H, + 40H™ Hydrogen Evolution Reaction
(HER)
Overall: 2H,0 — 2H, + 0,
Electrolyzer schematic 23



Rational design of electrocatalyst materials ()&=

ORR OER HER
ORR - - + —
0, + 2H,0 + 4e~ —— 4oHf 0N — 02 +2H0 +4e 2 T+2 7>
OER
- E,;=1.23Vvs. RHE « E,=1.23Vyvs. RHE « E,=0Vyvs.RHE
« commercial benchmark e commercial benchmark e« commercial benchmark
catalysts: Pt, Pt/C catalysts: Ir, IrO,, Ru catalysts: Pt

*Non-precious metals and non-metals
*Easily prepared and scalable

Abundant, economically viable materials
*Oxides/hydroxides for ORR/OER
Oxygen/hydrogen catalytic activity *Phosphides/sulfides for HER
' ). +Bifunctionality

. *More active catalytic sites
Nanoscale and high surface area structures -High mass efficiency
‘ ‘ 24
e ——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————




Importance of O, Electrochemistry mgs,

A. Multi-electron ceramic/air batteries (Primary)

1. VP +16 OH = VO3 + PO,*+ 8 H,0 + 10 e ; E = 1.07 V vs NHE VP/air ~ 4.3 kWh L
2. 0,+2HO0+4e=40H; E0 = 0.40 V vs NHE vs.
3. VP+6OH +5/20,= VO3 + P03 + 3 H,0; Eo=1.47V Gasoline 2.7 kWh L

TN Lambert et al. Chem. Commun. 2011 47, 9597-9599.

B. Sodium/air batteries (Secondary) Na/air ~ 1690 Wh ka-!
alair ~ g

Anodic half-reaction: Na = Na*+ e E® =0.00 V/Na
Cathodic half-reaction: O, + 2H,O0 +4e- =4 OH-  E°=+3.1 V/Na N VS. y
Full cell reaction: ~ 4Na + O, + 2H,0 = 4Na + 40H- Li-ion 200-250 Wh kg

Review: J. Power Sources 2011, 196(16), pp 6835-6840

C. Alkaline Fuel Cells (Bi-directional beneficial)

Anodic half-reaction: 2 H, + 4 OH = 4H,0 + 4e Proc. Nat. Acad. Sci. 2008, 105(52), pp 20611-20614
Cathodic half-reaction: O, + 2 H,O + 4e- = 4 OH-
Full cell reaction: 2H,+0,= 2H,0

D. Solar Fuels Synthesis

Fuel Generation: 2H* + 2e = H, E°®=0.00 V/RHE
or CO, + 6H* + 6e- = CH;0H + H,O E® = +0.05 V/RHE
Source of protons: 2H,0 = 20, + 4H* + 4e E°=+1.23 V/RHE Water Electrolysis

Gorlin et al. J. Am. Chem. Soc. 2010, 132, 13612-13614

Most effective catalysts are based on precious metals = rare, expensive
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MnO,/PEDOT composite thin films for the ORR

| . 15
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ORR: 0, + 2H,0 + 4e~ — 40H™

' ' ' ' ' ' T  MnO,/PEDOT improvement over
MnO, and PEDOT alone —

synergism/coupling effect
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Electrochemical impedance used to
quantify charge transfer
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Rationalizing the MnO./PEDOT synergism

AE (Mn 3s) eV

Mn Oxidation Staiz
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Rationalizing the MnO./PEDOT synergism ) i,
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Comparing to other known PEDOT electrocatalysts
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Why Cobalt? Bifunctionality ) i
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Oxygen reduction/evolution (ORR/OER)
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Water electrolysis (HER/OER)
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