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Electronic Properties Under Compression i,

Changes in electronic structure during shock compression have been
investigated as a potential mechanism for initiating or assisting reaction in
explosive materials
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(3 Bonding FIGURE 1 Schematic representation of the calculated bandgap of RDX:

& m -+ a perfect crystal; b RDX with edge dislocations; and ¢ shocked RDX with
I : +" edge dislocations
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Electronic Properties Under Compression Tz,

At Sandia, we are working on quantifying changes in electronic structure under
compression experimentally.

Goal of this talk is to simulate changes in band gap and optical spectrum of
RDX:

* Under hydrostatic compression
* Polymorphic differences

* Under uniaxial compression

« Directional dependence




Structure and Polymorphs of RDX )

At ambient conditions, RDX exists in its a phase:

« Orthorhombic (Pbca), with lattice constants a = 13.182; b = 11.574; ¢ = 10.709 A, and
cell volume V = 1633.9 A3."

Around 4 GPa?, a-RDX converts to y-RDX:

« Orthorhombic (PcaZ2,), with lattice constants a = 12.5650, b = 9.4769, ¢ = 10.9297 A,
and cell volume V = 1301.543.3

Under shock conditions, conversion is observed at 3.9 GPa after 100 ns induction period.

a-RDX conformation
(from Ref. 3) (from Ref. 3)

y-RDX conformation
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DFT Calculations L

Calculations are performed using VASP 5.4' (in MedeA?), using the generalized
gradient approximation with the PBE revised for solids functional3.

* PAW pseudopotentials* (hard) with 1250 eV cutoff
» Van der Waals corrections are made using the D3 method of Grimme>.

* Pre- and post-processing is accomplished using the MedeA? software
package by Materials Design.
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DFT Calculations Wi

Hydrostatic compression is simulated by iterative optimization to increasing

external pressure:

a0

Optimize experimental structure (at 0 GPa for a-RDX; 4 GPa for y-RDX)
Increment pressure

Optimize structure

Repeat steps 2 and 3.

Calculate band gap and optical spectrum for each optimized structure.

Uniaxial compression is simulated by optimizing iteratively contracted unit cells:

S A

Start with optimized structure from #1 above

Contract unit cell along axis

Optimize atom positions

Repeat steps 2 and 3, for compression along a, b, and ¢ axes.
Calculate band gap and optical spectrum for each optimized structure.




1. Unit Cells — Hydrostatic Compression (@&,
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a-RDX at 0 GPa Calculated: a=12.96476 b=11.19769 c = 10.50650 A
Experiment’: a=13.182 b=11.574 ¢=10.709 A

y-RDX at 4 GPa Calculated: a=12.54961 b=9.47896 c=10.84014 A

o

Experiment?: a=12.5650 b=9.4769 ¢=10.9297 A
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2. Band Gaps - Hydrostatic Compression [

Calculated (0 GPa): 3.4eV  Measured': 3.6 eV
Prev. Calc.2: 3.45eV
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3. Optical Spectra — Hydrostatic Compression )

o
©

o
oo

o
-\...d

o
)

—a-RDX, 0 GPa
—a-RDX, 20 GPa
—g-RDX, 20 GPa

Relative Absorption
©c o o o
N w E-N (8]

o
.

o

250 300 350 400 450 500 550 600
Wavelength (nm)
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4. Band Gaps — Uniaxial Compression

VIVyor L/IL, Compression Band Gap A Gap
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« Calculations predict some differences in electronic structure,
depending on axis of compression

* Band gap decreases more with uniaxial compression
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5. Optical Spectra — Directional Dependence@
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Optical spectra are different along a, b, ¢ axes 11




5. Optical Spectra — Uniaxial Compression T
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5. Optical Spectra — Uniaxial Compression
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Conclusions i) st

Effects of hydrostatic and uniaxial compression of RDX have been simulated
using density functional theory:

Calculations predict compression of band gap from 3.4 eV to 2.4 eV at 50
GPa (V/V,=0.6)

Changes in band gap similar for a-RDX and y-RDX under hydrostatic
compression

Optical spectra are directionally-dependent

Changes in optical spectra are different for different directions under
uniaxial compression
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