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Grain Boundary Segregation in 
Nanocrystalline Alloys



Nanocrystalline (NC) Metals
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The Case for NC Metals

o Excess free energy:
o Grain-growth and homogenization processes

§ Problem: High density of grain boundaries (GBs)
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�F = � (�A)

x

y

Grain 1

GB

Grain 2

Vn

✓

Herring, Phys. Powd. Metall. (1951)
Burke and Turnbull, Prog. Metal. Phys. (1952)
Mullins, J. App. Phys. (1956)

Grain growth in pure NC metals Rampant grain growth in pure NC Ni
Structure no longer NC after 20 min.

H. Murdoch, PhD thesis (2013)
Mat. Sci. and Eng. A 539 (2012), Nanostruct. Mat. 6 (1995)
J. Phys. Chem. C 111 (2007)

§ Possible solution: Solute segregation to GBs
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o Solute atoms preferentially occupy GB sites
o Kinetic and/or thermodynamic stabilization



Key Questions
o Predict role of GB solute segregation on microstructural evolution
o Leverage information from lower length scales

o Detangle thermodynamic aspects from kinetic ones

o Use the framework in the design of NC metallic alloys
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§ Free energy

Local energy density Gradient terms for
GBs and compositional damins

§ Dynamics
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Phase Field Formalism

Solute
Host

Mass conservation
Cahn-Hilliard Eq. 

Gradient flow
Allen-Cahn Eq. 
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o c(r,t): alloy concentration
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GB Segregation Isotherm
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GB Segregation Isotherm
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§ Gibbs adsorption eq.:

GB energy 𝜸gb= 𝜸gb(c, 𝛀gb)
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§ Polycrystalline systems
o Initially (t=0): 1560 grains
o c(r, t = 0) = hci = 0.2

Normal grain growth
No segregation

With GB segregation and 
phase separation

Abdeljawad et al., Acta Mater. (2017)
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Observations

Atomistics: Pt-Au

Abdeljawad et al., Acta Mater. (2017)

Experimental: Pt-Au

Lu et al. (Under review in Scripta Mater.)

Hybrid MC/MD, T = 775K, 15 at.% Au
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Future Work
§ Anisotropy in GB segregation
o Dependency on GB geometric degrees of freedom



Substitutional Diffusion in Polycrystals



heating to 250ºC for 
40 minutes

Au

Cu substrate

Observations: Seeing is Believing

Nano-grained electroplated Au
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heating to 200ºC for 
10 minutes

Kirkendall voids

Au

Cu

Observations: Seeing is Believing

Paul Kotula (SNL, 2018)



2) Kirkendall effect in cases when 𝜇V ≠ const è GB/surface/dislocations: sources/sinks
Vacancy mediated transport, kirkendall voids

Cu has diffused ~200 nm into Au
Kirkendall voids have formed in the Cu

Green = Cu

Red = Au

Questions to Address

Paul Kotula (SNL, 2018)



Kirkendall Effect
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A Model Accounting for GBs
§ Treat the system as a ternary alloy 
o Metal A (slow diffusor), Metal B (fast diffusor), and Vacancies V

§ Irreversible thermodynamics
Ji = �LiArµA � LiBrµB � LiV rµV , i = A, B, Vi = A, B, V
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Accounting for GBs
§ GBs are assumed as efficient sources/sinks for vacancies
o Vacancy concentration at GBs is maintained at its equilibrium value 
o This introduces fluxes of vacancies into the bulk grains
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Results: Bi-crystals
Ceq

V > CV (t = 0)

CV

CB

§ Initial condition:



Results: Bi-crystals
Ceq

V < CV (t = 0)

CV

CB

§ Initial condition:



Results: Polycrystals

cB = 0.5

: Equi-axed
: 2-grain slab
: 12-grain slab

cB = 0.5

iso-lines
Equi-axed

2-grain slab

12-grain slab



Future Work
§ Atomistically informed description of Dij through Lij

§ GB short circuit diffusion and anisotropy 
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Competing Processes

o Initially (t=0): 1560 grains

o (unstable alloy)

o Vary GB free energies

c(r, t = 0) = hci = 0.2 Initial (t = 0): Colors are for grain IDs 

⌥(t) =

R
dr c(r, t)P (~�)R
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hDi

§ Grain growth, GB segregation and phase separation

⌥ =

⇢
0, No solute at GBs

1, GBs saturated with solute

§ Metrics
o Average grain dimeter

o Define solute partitioning factor



Relation to Solute Drag
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§ Sharp interface asymptotics (underway)
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Relation to Solute Drag

§ Solute drag model [ideal, dilute alloys]
Vn = Mgb
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§ Phase field sharp interface asymptotics (underway)

P ⇤(Vn)

: Curvature driven flow

: Drag pressure
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An Active Area of Research

As milled
Annealed

1 week at 1100°C
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Sluggish growth dynamics 
W-20 at.% Ti
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Pure Cu Cu-Zr (d = 45nm)
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Dependency on solute and GB types
Al in Ni Ag in Ni

NC alloy design


