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21 Time series analyses

Segmentation of inflow and outflow time series based on time variation of the
injection pressure

Pressure vs time
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Segments A and B for the inflow, and Segments E and H for outflow were
selected for further time series analysis




3 ‘ Limited gas saturation degree
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Global embedding dimension

Evaluation of the Global Embedding Dimension (GED=4-5) indicates phenomena of low-
dimensional chaos with both deterministic and small stochastic components

Global Embedding Dimension was calculated using the False Nearest Neighbors

Embedding dimension

Method (Faybishenko et al., 2022).
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s 1 Capillary pressure

_ 20cos(0)
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Advancing front

Given the typical values:
o=~70mN/m

6 = ~40°

r =1-10 nm (radius of pore necks)

P. is estimated to ~10 - 100 MPa, which is significantly higher
than a gas pressure generally used in an experiment.

Pressure vs time
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Immiscible fluid displacement

Gas R —> Water + bentonite

Viscous or inviscid fluid o Viscoelastic medium

F(x,y,z,t)=0




Limited gas saturation degree

Water or gas
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If gas migrates through channeling, the
Gas

gas saturation degree would be about L,/
(L,+L;), which is relatively small and

determined by the swelling pressure
curve.




Channeling, fracturing and interface
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s 1 Fracture opening as a moving boundary problem

V-Vu+(1—-2v)+V?u=0

dl’
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Dispersion equation
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10 I Gas breakthrough
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* Make enough room for gas phase
to percolate through (one
percolating channel). P
* Internal pressure is high enough to G
sustain the compression by the
confining stress and the surface
tension.
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11 1 Instability of a single deformable channel

Tube expansion
and contraction
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Gas flow in a deformable channel
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Instability - a chain of bubbles percolating through
a deformable channel




13 1 Instability of a deformable channel
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» Critically stressed medium
» Individual gas bubbles
» High frequency variations - material properties




Gas bubble movement: Deterministic chaos

* As a gas bulb or channel nucleates and migrates in a
water saturated compacted bentonite, complex P
nonlinear dynamics of gas flow would emerge due ~  ~=====7"T___ _
to the dynamic coupling between fluid flow and
matrix deformation.

« The complex behaviours of the system arise from Channel healing  Dilated zone  Channel opening
constantly unstable gas percolation fronts.
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Assume stepwise movement of a
bubble to overcome the threshold
for bubble opening at its advancing
front.

FORGE Report D4.17 (Harrington, 2013)
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Put everything together ...
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Relaxation

Squeezing
Channeling

squeezing



Beyond bentonite and clays ...
16 | Porosity waves
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Shear-induced porosity waves creating
geofluid localization and episodic releases

in salt formations
Yifeng Wang, Hua Shao, Kristopher L. Kuhlman, Carlos
F. Jove-Colon, Olaf Kolditz

Grain boundary
wetting/dilation

Grain boundary drying




171 Perspective

 Completed conceptual model
* Nest steps

Formulate a dynamic model for channeling (partially
completed)
Formulate a dynamic model for gas permeation in a
viscoelastic channel. (Completed)
Perform linear stability analyses for the dynamic models.
« Simple geometry: infinite domain
* Experimental systems
Perform numerical simulations.
Refine the model for individual bubble movement (3-4
variables).
Manuscripts (one on dynamic model, one on time series
analysis for large-scale tests)

» Data requirements

High resolution sampling interval
Data from large-scale tests




