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Outline 

• Overview of a high-dimensional combustion system
• time-of-flight mass spectrometry

• Bayesian optimal experimental design

• Challenges associated with high-dimensional models
– finding low-dimensional representations

• Example

• Conclusion & Future work
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• Mass spectrometry is an analytical method to identify 
compounds in an unknown sample

High-pressure photolysis reactor experiment

• Premixed gaseous mixture flows into a constant 
pressure reactor

• Photolysis laser fires instantaneously irradiating the gas 
mixture 
• Chemical precursor broken down initiating a reaction

• Synchrotron tunable vacuum-ultraviolet (VUV) 
photoionization mass spectrometry
• Measurement of time-of-flight mass spectrum taken 

across kinetic times and VUV energies

High-pressure photolysis reactor

Time-of-flight mass spectrum at a fixed 
VUV energy and kinetic time

L. Sheps, I. Antonov, K. Au. Sensitive mass spectrometer for time-resolved gas-phase chemistry 
studies at high pressures. The Journal of Physical Chemistry A 123.50 (2019) 10804-10814.
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Modeling the high-pressure photolysis reactor
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Data model:

Visualization of the measurement tensor, 

• Physics model
• Zero-dimensional reactor 
• Photolysis laser model

• Chemical model
• C0-C3 chemical mechanism
• 171 species / 1143 reactions

• Instrument model 
• Maps concentrations to ion counts
• Peaks idealized as Gaussian distributions
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Modeling the high-pressure photolysis reactor
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Data model:

• Physics model
• Zero-dimensional reactor 
• Photolysis laser model

• Chemical model
• C0-C3 chemical mechanism
• 171 species / 1143 reactions

• Instrument model 
• Maps concentrations to ion counts
• Peaks idealized as Gaussian distributions

High-dimensional 
parameter space

High-dimensional 
output tensor
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Motivation

• Identify key operating conditions to study specific chemical rate constant 
measurements (model parameters) 
– reactor temperature, reactor pressure, mixture composition

Why is this important? 

• Operation of the real experiment is costly and laborious
• Initial setup time for the apparatus 
• Daily calibration experiments necessary before any measurements are made

• Limited time to run experiments
• Advanced Light Source, Lawrence Berkeley National Laboratory
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Objective
Find a set of experimental conditions that maximizes the expected utility

– Goal of the experiment is to learn chemical rate constant measurements of interest

Bayesian optimal experimental design

NotationNotation
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Select a utility function to satisfy a particular modeling goal

• Parameter inference 

Choice of utility function

• Information gain of an experiment is closely related to minimizing the parameter uncertainty
• Kullback-Leibler divergence can be used to measure what we can learn from the experimental data
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Choice of utility function
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Select a utility function to satisfy a particular modeling goal

• Parameter inference 
• Information gain of an experiment is closely related to minimizing the parameter uncertainty
• Kullback-Leibler divergence can be used to measure what we can learn from the experimental data
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Approximating the expected utility
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N. Friel, J. Wyse, Estimating the evidence–a review, Statistica Neerlandica 66.3 (2012) 288-308.
A. Gelman, X. Meng, Simulating normalizing constants: From importance sampling to bridge sampling to path sampling, Statistical science (1998) 163-185.

Numerical approximation: 

Several approaches to estimate the marginal likelihood

• Monte Carlo sampling
• Laplace approximation
• Importance sampling
• Variational methods
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Approximating the expected utility
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T. Rainforth et al, On nesting monte carlo estimators, International Conference on Machine Learning. PMLR, 2018.
K.J. Ryan, Estimating expected information gains for experimental designs with application to the random fatigue-limit model, Journal of Computational and 
Graphical Statistics 12 (2003) 585–603.

Nested Monte Carlo

Numerical approximation: 
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Maximizing the expected utility, 𝑈(𝑑)
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N. Srinivas, A. Krause, S. Kakade, & M. Seeger. Gaussian process optimization in the bandit 
setting: No regret and experimental design. arXiv preprint arXiv:0912.3995 (2009).

Bayesian Optimization
• Construct a Gaussian process model of the unknown objective function 𝑈(𝑑)

• Use an acquisition function 𝛼 𝑑 to select new samples, trading-off between 
exploration and exploitation

• Select next sample as:  

• Evaluate utility function at
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Bayesian Optimization
• Construct a Gaussian process model of the unknown objective function 𝑈(𝑑)

• Use an acquisition function 𝛼 𝑑 to select new samples, trading-off between 
exploration and exploitation

Gaussian Process Upper Confidence Bound

• Exploits regions with a high mean and explores regions of high uncertainty

Maximizing the expected utility, 𝑈(𝑑)
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N. Srinivas, A. Krause, S. Kakade, & M. Seeger. Gaussian process optimization in the bandit 
setting: No regret and experimental design. arXiv preprint arXiv:0912.3995 (2009).
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Challenges
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Computational limitations 
• High-fidelity physics-based simulations can be expensive to evaluate

• At most, 𝑁𝑀 evaluations needed to estimate 𝑈 𝑑 , assuming no reuse of data

• Memory limitations storing a (𝑁 × 𝐽) sparse matrix, with 𝐽 = 5.1 × 10!

• Constructing a surrogate model addresses the computational cost
• number of model outputs remains problematic

• Can we find a low-dimensional representation of the high-dimensional model 
output?
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Reducing output dimensionality
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Goal: Map model output from high-dimensional space to a lower-dimensional space 
while minimizing loss of information

Truncated SVD

Transformation: 
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Reducing output dimensionality
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Construct 𝐾 surrogate models, one for each of the low-dimensional QOIs

How should we represent the likelihood in the low-dimensional space? 
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Reducing output dimensionality
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Construct 𝐾 surrogate models, one for each of the low-dimensional QOIs
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Evaluating 𝑈(𝑑)
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Example: Simplified reactor model
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Original data model, 

Simplifying assumption: 
Only a small subset of the model parameters are considered uncertain

• 4 / 1143 reaction rates uncertain, all other reactions are at their nominal values
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Results
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Optimization method: Bayesian Optimization
Acquisition function: UCB, with 𝛽! = 2.5

Dimension reduction: 𝐾 = 20 components

25 Latin-Hypercube samples  
50 proposal samples

𝜒!!"" = 8.3 ×10#$

𝜒%# = 2.5×10#&

𝜒'() = 1.9×10#*

Fixed design parameters: 

𝑁 = 1 ×10*, 𝑀 = 1 ×10*# of utility samples: 

(black points)
(red crosses)

Solid surface is the mean function from a Gaussian process 
model representing 𝑈(𝑑). Evaluations of the utility function are 
shown as black points or red crosses. 
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Results
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Initial proposals by the acquisition function were near the maximum, 
(T, p) = (598.4 K,  40 bar)

Solid surface is the mean function from a Gaussian process 
model representing 𝑈(𝑑). Evaluations of the utility function are 
shown as black points or red crosses. 
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Heatmap of the estimated utility function using a Gaussian process 
mean function. Data sets are generated at each of the design points 
(A, B, C) and ae used to infer the posterior density. 

Bayesian inference was performed to observe change in the joint 
posterior density given plausible data sets at each of the design 
points. 

(A)

(B) (C)

Results

(B)

(C)

(A)
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Conclusion & Future Work
High-dimensional combustion systems can be challenging for OED studies
• Demonstrated feasibility of BOED on the high-pressure photolysis reactor
• Bayesian optimization shown to be efficient optimizing noisy utility functions
• Low-dimensional representation of the model output gives significant and 

necessary computational savings 
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Future Work 
• Relaxing assumptions on number of uncertain model parameters
• Preliminary work shows set of influential model parameters can greatly change 

across the design space (in total ∼ 40 − 100 relevant model parameters)

• Perform several iterations of the OED loop, collecting data at the optimal design
• Improve model error, allowing design dependence
• Compare performance of experiments at optimal designs to random designs
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Estimating the marginal likelihood

Monte Carlo estimation

Linear Model

Monte Carlo estimate of the log marginal likelihood converges to 
the true value, shown as a red dashed line, as number of 
samples goes to infinity.
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Estimating the marginal likelihood
Linear Model

Significant error in the estimate of the log marginal likelihood 
as compared to the lower dimensional problem at a fixed 
number of samples. 

• As dimensionality increases, numerous 
samples are necessary to converge to the 
true marginal likelihood value
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Numerical approximation
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Modeling the high-pressure photolysis reactor
Data model:

Solid surface is the prediction of 𝑓 𝜃!"#, 𝑑, 𝑥 for one of
the peaks in the time-of-flight spectrum (H2O2).
Mesh surface shows the prediction with model error,
𝑓 𝜃!"#, 𝑑, 𝑥 + 𝜇$(𝑥) which increases the fidelity of the
predictive model.

• Physics model
• Zero-dimensional reactor 
• Photolysis laser model

• Chemical model
• C0-C3 chemical mechanism
• 171 species / 1143 reactions

• Instrument model 
• Maps concentrations to ion counts
• Peaks idealized as Gaussian distributions


