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High-pressure photolysis reactor

gas out \
front
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« Mass spectrometry is an analytical method to identify / eactorbe
compounds in an unknown sample

High-pressure photolysis reactor experiment b i) vuy
« Premixed gaseous mixture flows into a constant
pressure reactor el
* Photolysis laser fires instantaneously irradiating the gas \ i /

mixture
« Chemical precursor broken down initiating a reaction | *
« Synchrotron tunable vacuum-ultraviolet (VUV)
photoionization mass spectrometry
« Measurement of time-of-flight mass spectrum taken
across kinetic times and VUV energies
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L. Sheps, I. Antonov, K. Au. Sensitive mass spectrometer for time-resolved gas-phase chemistry Time-of-flight mass spectrum at a fixed
studies at high pressures. The Journal of Physical Chemistry A 123.50 (2019) 10804-10814. VUV energy and kinetic time
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Modeling the high-pressure photolysis reactor

Data model:

z(d,x) =&(d,x) + €(x)
z(d,x) = f(0,d,x) + i(x) + e(x)

x = |r,t, E|

d : design conditions

0 : model parameters

€I .

spatial /temporal
coordinates

0(z) ~ GP(us(x), Zs(w,x)), e(x) ~ N(0,s(z)?)

* Physics model

« Zero-dimensional reactor

* Photolysis laser model
 Chemical model

¢ C0-C3 chemical mechanism

* 171 species / 1143 reactions
* Instrument model

* Maps concentrations to ion counts

 Peaks idealized as Gaussian distributions

z(d, z): ion-count data

£(d, x): true physical process

f(0,d,x): physics and instrument model
d(x): model error

e(x): observation noise
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Photon energy kinetiC time

Visualization of the measurement tensor, 2(d, )

mass-to-charge ratio
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Modeling the high-pressure photolysis reactor

Data model: z(d, z): ion-count data
d : design conditions :
Z(d, :13) = £(d, az) -+ E(:L’) 8 : model parameters £(d,x): true physical process
Z(d, .’L‘) = f(G, d, .’L') —+ 5(:13) + e(a:) 2 : spatial /temporal f(0,d,x): physics and instrument model
z = [rt B coordinates d(x): model error
e(x): observation noise
d(x) ~ GP(us(x),Xs(z, ")), e(z) ~N(0,s(x)?)
+ Physics model / High-dimensional \
- Zero-dimensional reactor output tensor
* Photolysis laser model 2(d, @) € R23000x240x85
« Chemical model ’ .
: : 25000 x 240 x 85) = 5.1 x 10° el t
« C0-C3 chemical mechanism ( K240 % 89) A Clemens
« 171 species / 1143 reactions High-dimensional
* Instrument model parameter space
« Maps concentrations to ion counts \ 0 c R1151 /
« Peaks idealized as Gaussian distributions
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 ldentify key operating conditions to study specific chemical rate constant

measurements (model parameters)
— reactor temperature, reactor pressure, mixture composition

Why is this important?

« QOperation of the real experiment is costly and laborious
« Initial setup time for the apparatus
« Daily calibration experiments necessary before any measurements are made

* Limited time to run experiments
« Advanced Light Source, Lawrence Berkeley National Laboratory
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Bayesian optimal experimental design

Objective

Find a set of experimental conditions that maximizes the expected utility
— Goal of the experiment is to learn chemical rate constant measurements of interest

d* = arg max U(d) " Notation )

d : design conditions

6 : model parameters

U(d :/ / 4, 0)p(0,y|d)dody |y data
(d) . QE@U(?J )p(0, y|d)dody 7 P

/ / u(y,d,0)p(0ly, d)p(y|d)dody
yey Joco
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Choice of utility function

Select a utility function to satisfy a particular modeling goal

« Parameter inference

« Information gain of an experiment is closely related to minimizing the parameter uncertainty
« Kullback-Leibler divergence can be used to measure what we can learn from the experimental data

(0ly, d)
p(0)

ulyd,0) = Dicw (p(01: ) 1p(0)) = [ p(Oly, ) 1og [p ] a6

ORELUK — SNL APRIL 13, 2022



Choice of utility function

Select a utility function to satisfy a particular modeling goal

« Parameter inference

« Information gain of an experiment is closely related to minimizing the parameter uncertainty
« Kullback-Leibler divergence can be used to measure what we can learn from the experimental data

p(0ly, d)
p(0)

ulyd,0) = Dicw (p(01: ) 1p(0)) = [ p(Oly, ) 1og [ ] a6

_ o | P01y, )
U@ = [ [ x| PO ot dasptularay

How do we compute U(d)?
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Approximating the expected utility

Numerical approximation:

log p(y' 10D, d) —log p(y'?|d)| where, 8% ~ p(6)

2 Y | |
77 y ~ p(ylo", d)

Several approaches to estimate the marginal likelihood

 Monte Carlo sampling
« Laplace approximation
* Importance sampling

« Variational methods

p(y]d) = / p(y P16, d)p(6)d6

M
1 . . .
N E p(yW10Y) . d), where, 89 ~ p(0)
7=0

N. Friel, J. Wyse, Estimating the evidence—a review, Statistica Neerlandica 66.3 (2012) 288-308.
A. Gelman, X. Meng, Simulating normalizing constants: From importance sampling to bridge sampling to path sampling, Statistical science (1998) 163-185.
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Approximating the expected utility

Numerical approximation:

N
U(d) ~ ) |logp(y™”|0",d) —logp(y™|d) | where, 0 ~ p(6)
i=0 — (4) (%)
- 77 y ~ p(yl6*,d)

Nested Monte Carlo

N M

1 . : 1 i '

N E logp(y(z)w("),d) U E logp(y( )‘9(3)7d)
1=0 Jj=0

T. Rainforth et al, On nesting monte carlo estimators, International Conference on Machine Learning. PMLR, 2018.
K.J. Ryan, Estimating expected information gains for experimental designs with application to the random fatigue-limit model, Journal of Computational and
Graphical Statistics 12 (2003) 585-603.

ORELUK — SNL APRIL 13, 2022



Maximizing the expected utility, U(d)

d* = argmax U (d)
deD

Bayesian Optimization
« Construct a Gaussian process model of the unknown objective function U(d)

U(d) ~ N(u(d),K(d,d))

« Use an acquisition function a(d) to select new samples, trading-off between
exploration and exploitation

 Select next sample as: d; = arg max o;(d)
deD

- Evaluate utility function at U (d;)

N. Srinivas, A. Krause, S. Kakade, & M. Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. arXiv preprint arXiv:0912.3995 (2009).
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Maximizing the expected utility, U(d)

d* = argmax U (d)
deD

Bayesian Optimization
« Construct a Gaussian process model of the unknown objective function U(d)

U(d) ~ N(u(d),K(d,d))

« Use an acquisition function a(d) to select new samples, trading-off between
exploration and exploitation

Gaussian Process Upper Confidence Bound
at(d) = pe—1(d) + v/ Bror—1(d)

where t is the optimization iteration and o;_1(d) = /K (d, d).
« EXxploits regions with a high mean and explores regions of high uncertainty

N. Srinivas, A. Krause, S. Kakade, & M. Seeger. Gaussian process optimization in the bandit
setting: No regret and experimental design. arXiv preprint arXiv:0912.3995 (2009).
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Challenges

Computational limitations
» High-fidelity physics-based simulations can be expensive to evaluate

« At most, NM evaluations needed to estimate U(d), assuming no reuse of data

- Memory limitations storing a (N x J) sparse matrix, with ] = 5.1 x 108

« Constructing a surrogate model addresses the computational cost
« number of model outputs remains problematic

« Can we find a low-dimensional representation of the high-dimensional model
output?
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Reducing output dimensionality

Goal: Map model output from high-dimensional space to a lower-dimensional space
while minimizing loss of information

Truncated SVD

At a fixed design d,
e Draw n sample of 8() ~ p(8)

e Evaluate model f(0,d,x) + §(x) + ¢(x)

e Construct output matrix Z = USVT, where Z € R™ J = 5.1 x 10®
e Retain only top K singular values of S

e Low-rank approximation: Zx = UgS KV[?

Transformation:
ansto atio Q(97d7m)zz(d7m)VK

9(8,d,@) = [/(8,d,) + §(x) + ()] Vic
(1><VK) (1;]) (JxK)
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Reducing output dimensionality

Construct K surrogate models, one for each of the low-dimensional QOls
9x(0) =~ qx(0,d,x), fork=1,..., K

How should we represent the likelihood in the low-dimensional space?

ORELUK — SNL APRIL 13, 2022



Reducing output dimensionality

Construct K surrogate models, one for each of the low-dimensional QOls

9x(0) =~ qx(0,d,x), fork=1,..., K

. Recall, z(d, ZB) — €(d, ;(;) + e(az) / 2
A(d.2) = F(0.d.2) + 5(z) + () §(x) ~ GP(us(x),Zs(x, x)), e(x) ~ N(0,s(x)?)
Therefore, p=Elz] = f(0,d,x) + ps(x)

> = Var[z] = Bs(z, ') + diag(s(z)?)

Given a linear transformation of z,

pq = Elg] = pVi
¥, = Var[q] = ;! TV
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Evaluating U(d)

N M
1 L 1 o
U(d) =~ N E log p(29 0D, d) — Y E logp(2916Y) d)
i=1 | j=1 ]

where 2() ~ p(2]0®, d) and p(2]00),d) ~ N(p, ).

Rewriting the data,

N M
1 ; : 1 . .
U(d) ~ > [logp(q("')Vf? 69,d) — — > logp(¢" Vi 9(3),61)}
i=1 =il
Taking a linear combination of the data,
1 & - L 1 M o
U(d) ~ > |logp(g?|6®,d) — == Jlogp(¢"0"), d)
i=1 | j=1 ]

where ¢ ~ p(q|0®,d) and p(¢?|0@), d) ~ N (uVi, VEE V).
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Example: Simplified reactor model

Original data model,

z(d,x) =€&(d,x) + €(x)

z(d, x): ion-count data

£(d,x): true physical process

Z(d: CB) — f(G’ d, QL') Y 5(33) T 6(3’:) f(0,d,x): physics and instrument model

x = |r,t, E|

0(z) ~ GP(us(x), Ls(w,x)), e(x) ~ N(0,s(z)?)

d(x): model error

¢(x): observation noise

Simplifying assumption:

Only a small subset of the model parameters are considered uncertain
4 /1143 reaction rates uncertain, all other reactions are at their nominal values

1)
2)
3)
4)
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O+H,—-OH+H
C;Hg + H — CH;CH,CH, + H,
O, + CH3CH,CHy — OH + C—-CH,OCH(CH,;)
CH;CH(OOH)CH, — OH + C—-CH,OCH(CHj)
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Results
e Initial
ﬁed design parameters: xc.y, = 8.3 ><10"7\

%  Proposed
XOZ = 2.5)(10_2
Xpre = 1.9x107*

# of utility samples: N = 1x10*, M =1 x10*

Optimization method: Bayesian Optimization
Acquisition function: UCB, with /B, = 2.5

Dimension reduction: K = 20 components

25 Latin-Hypercube samples  (black points)

@proposal samples (red crosses)

600
re (K)

0 400 >00
300 Temperatd

Solid surface is the mean function from a Gaussian process
model representing U(d). Evaluations of the utility function are
shown as black points or red crosses.
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Results

e Initial
%  Proposed
S
o -
©
Q
0]
—
>
2]
(2]
)
| -
a
500 600 : . . . |
0, 400 nperature (K) 300 400 500 600 700 800
e

Temperature (K)

Solid surface is the mean function_from d Gauss.i;?m process Initial proposals by the acquisition function were near the maximum,
model representing U(d). Evaluations of the utility function are (T, p) = (598.4 K, 40 bar)

shown as black points or red crosses.
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Results

40
p(6) p(6]z)
4 4 4
35-
2‘ 2<
301 S o 01
T 25 2 ]
(O
Q
o) - - (A)
S 201 —4 P 0 2 4 -4 -2 0 2 4
[92]
(2]
g : :
15
21 2
10+ Sy 0 0
5_
300 400 500 600 700 800
Temperature (K)
Heatmap of the estimated utility function using a Gaussian process Bayesian inference was performed to observe change in the joint
mean function. Data sets are generated at each of the design points posterior density given plausible data sets at each of the design
(A, B, C) and ae used to infer the posterior density. points.
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Conclusion & Future Work

High-dimensional combustion systems can be challenging for OED studies
« Demonstrated feasibility of BOED on the high-pressure photolysis reactor
« Bayesian optimization shown to be efficient optimizing noisy utility functions
» Low-dimensional representation of the model output gives significant and
necessary computational savings

Future Work
» Relaxing assumptions on number of uncertain model parameters
* Preliminary work shows set of influential model parameters can greatly change
across the design space (in total ~ 40 — 100 relevant model parameters)

« Perform several iterations of the OED loop, collecting data at the optimal design
* Improve model error, allowing design dependence
« Compare performance of experiments at optimal designs to random designs
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Estimating the marginal likelihood

Linear Model L
Y H s
4 y=G(0) + e A P : |
i v .
G(6) = A6 y € RIS » SEEEEE

HNN(MOaz()) v, ER% Si $ ; ' ! ;
e ~ N(0,Zc) FRNE S

k j - ~100 i .

Monte Carlo estimation o0l :

; ; # of Monte Carlo Samples
P61 = [y 216, d)p(0)a8

Monte Carlo estimate of the log marginal likelihood converges to
the true value, shown as a red dashed line, as number of

M
%% Zp(y(z‘)w(j), d), Where, Q(j) N p(@) samples goes to infinity.
j=0
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Estimating the marginal likelihood

Linear Model |\ -
/ \ -100
y=G(0) +e
G(0) = Af y € R .o :
<> —300 °
= . .
QNN(M(%EO) 9€R50 = . e s : !
= 400 * . } I
e ~ N(0,%,) = '
o) o ° ° ! .
k j — -5001 , . o .
. P,
-6001 ° .
—700 1 :
103 104 105 106
 As dimensionality increases, numerous # of Monte Carlo Samples
samples are necessary to converge to the Significant error in the estimate of the log marginal likelihood
true marginal likelihood value as compared to the lower dimensional problem at a fixed
number of samples.
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Numerical approximation

u(y,d,0) = Dxr(p(0ly, d)||p(0)) = ]@ p(0ly, d) log [p(9|y’ 9 } df = u(y,d)

p(0)
[ [ u(y, p(Oly, d)dop(y|d)dy

/( d)p(y|d)dy
y

Using p(8ly, d) = p(y|0, d)p(0)/p(y|d),
0, 248 o

_ /y /@ log p(y19, d) — log p(yd)] p(y19, d)p(6)dody




Modeling the high-pressure photolysis reactor

Data model:

z(d,x) =&(d,x) + €(x)
z(d,x) = f(0,d,x) + i(x) + e(x)

ion-count

x = |r,t, E|
0(z) ~ GP(ps(x), Es(x, x')), e(x) ~N(0,s(x)?)

* Physics model
o Zero-dimensional reactor

* Photolysis laser model

e Chemical model

« CO0-C3 chemical mechanism
171 species / 1143 reactions Solid surface is the prediction of f(6,,4p,d,x) for one of
e Instrument model the peaks in the time-of-flight spectrum (H,O,).
R Maps concentrations to ion counts Mesh surface shows the prediction with model error,
. . . . g . f(Byap,d, x) + us(x) which increases the fidelity of the
» Peaks idealized as Gaussian distributions oredictive model
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