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Abstract—Grid operating security studies are typically 
employed to establish operating boundaries, ensuring secure and 
stable operation for a range of operations under NERC guidelines. 
However, if these boundaries are violated, the existing system 
security margins will be largely unknown.  As an alternative to the 
use of complex optimizations over dynamic conditions, this work 
employs the use of reinforcement-based machine learning to 
identify a sequence of secure state transitions which place the grid 
in a higher degree of operating security with greater static and 
dynamic stability margins. The approach requires the training of 
a machine learning agent to accomplish this task using modeled 
data and employs it as a decision support tool under severe, near-
blackout conditions.
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I. INTRODUCTION

During near blackout conditions, grid operators may be able 
to restore the system to a safe condition using a Machine 
Learning (ML) real-time decision support tool.  Doing so would 
require the ability to transition (or dispatch) the grid into a 
‘good’ state, defined as a unique dispatch where the grid has a 
high margin of operational security and is serving a near 
maximum amount of load.  Under severe emergency conditions, 
it may not be possible to determine this operating point using 
optimization, nor might there be sufficient time to find it by 
study.  Additionally, when operating outside of planned 
operating criteria, an improved dispatch solution requires 
following a path from the current state to the final state to ensure 
avoidance of instabilities or other detrimental operating 
conditions. Therefore, this paper presents an alternative 
approach to improve grid security through a series of 
incremental dispatches using Reinforcement Learning (RL).  
Each agent used in this research is referred to as a navigable 
player since it operates inside a power grid simulation 
environment, but more strictly it represents the decision process 
to change the overall grid dispatch to an improved state of 
security while serving as much load as possible, near-maximum 
if achievable. The RL method offers the potential of a speedy 
solution, with a high probability of achieving a secure, near-
optimal solution. The RL agent selects incremental changes in 
the dispatch which represent a secure transition path from the 
current state to the final state, all the while improving upon load 
served when possible.

This work formalizes these transitions as a Markov Decision 
Process (MDP). A MDP consisting of 1) states, 2) actions to 
change state, 3) a transition matrix containing probabilities for 
transitioning from on state to another with respect to a given 
action and 4) immediate reward received after transitioning from 
one state to another. The MDP provides a formal specification 
for reinforcement learning in a simulation, or game, 
environment. In this research each agent choses an action from 
the current state to enact a change in the state and environment, 
and more specifically the RL agent learns to improve its choice 
of action over time. To assess the security of the grid during 
changes in dispatch we employed specific security metrics to 
ensure safe transitions during off-nominal operation, and this is 
a key difference between this and prior work [1-3]. The RL agent 
learns to navigate the MDP state space by increasing security 
measure values with the goal of increasing margins from 
catastrophic boundaries in the operational environment.

II. POWER GRID MODEL
To train and deploy the RL agent, a simplified dynamic 

power grid model was developed.  The power system is a an 
asymmetric, three-area, three generator system which exhibits 
sufficient complexity to demonstrate the need for the RL agent 
to navigate in achieving its objective of increasing operational 
security and improving load served, while avoiding instabilities.  
Three control dimensions define the state space; these are the 
dispatch outputs of generators 1, 2 and 3.  Total system load was 
automatically scaled to ensure it was equal to total system 
generation plus losses for each dispatch state.  Operational 
security metrics were determined using Power System Toolbox 
(PST) [4] analysis running on MATLAB and imposed onto 
each discrete state.  Security metrics include minimum and 
maximum bus voltages, minimum critical clearing time, 
maximum line flow, and minimum damping ratio.  The 
objective of each agent is to maximize the system load served 
while maintaining a sufficient margin of operational security.

A. Grid Model and Topology
The grid topology utilized for this work is shown in Fig. 1.  

A three-dimensional discrete state space was developed of size 
253. The RL agent’s objective is to incrementally adjust the 
system dispatch in a manner that increases system load while 
simultaneously improving system security.
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Fig. 1. System Toplogy for Agent Navigation and Training.

System security metrics were made available to navigating 
agents for limited feedback during the navigation process.  Fig. 
2 shows a 2-D slice of this state space, holding Generator 3 
power output constant at 1.0 pu.  Time domain simulation was 
replaced with eigen-analysis and the use of equal area criterion 
[5, 6].  The upper region of the panels in Fig. 2 (marked with 
x’s) did not result in converged load flows, and were interpreted 
as unsecure dispatches, whereas dots represent converged load 
flows.

Fig. 2. Two-Dimensional Slice of a 3-D State Space (Disaptch) for the Power 
System Shown in Fig. 1.

The following bulleted list describes the computation of each 
security measure.

 Bus Voltage: The voltage contours shown in Fig. 2 
represents the minimum of all nine bus voltages as 
determined by load flow for each state.  There were no 
conditions that resulted in overvoltage conditions for this 
system.

 Line Flow: The line flow contours are represented as the 
maximum line flow for all lines at each state, as 
determined by a load flow analysis.

 Transient Stability: Critical clearing time was 
calculated for each generator, for each state, using a 
Thevenin system reduction.

 Small Signal Stability:  For each state, the dynamic grid 
models were linearized, eigenvalues found, and damping 
ratios calculated.

Fig. 2 is decomposed into four panels, shown in Fig. 3.  
Within each panel of Fig. 3, the green region represents adequate 
system security, the yellow region represents stable but poor 
grid security, and the red region represents unacceptable system 
security.

Fig. 3. Constraints Shown Indiviually Here Are Deconstructed from Fig. 2.  
Colors Identify the Reward Regions Defined in Table I.  Green Represents a 
Feasible Region, in which the Optimal Exists.  Yellow Regions Are Penalty 
Regions where Operation Is Possible but Undesired.  Red Represents Instability 
or Failure.

The boundaries for these regions are defined mathematically 
in Table I.



TABLE I. SECURITY REGIONS: FEASIBILITY, PENALTY AND FAILURE

B. Reward Region and Security Condition Specification
The security constraints shown in Fig. 2 were converted to 

security condition equations for use by agents during navigation 
and learning.  These equations were derived as listed in Table I, 
such that the instantaneous MDP reward for navigation in 
feasibility regions is larger than that for penalty regions which 
in turn is larger than that of failure regions. The term feasibility, 
shown in Table I was selected as an analogy to an optimization 
problem.  In all cases, the optimal state, the state with the highest 
reward, is state within the feasible region that is serving the 
highest amount of system load.

C. Grid, State Space Dimensionality
The viability of the technique presented is dependent upon 

the ability of the RL agent to successfully navigate higher 
dimensional spaces.  These dimensions arise from the 
independent control of additional generators, loads, and 
topological configurations.  Although this paper is considering 
a simplified system with only three control dimensions, higher 
dimensional systems are currently being developed which 
utilize transfer learning and the use of variable navigation 
control step size(s).

III. MACHINE LEARNING MODEL
In this research, we employ deep reinforcement learning 

(DRL) to learn appropriate actions to take for a given grid state 
determined using the data samples generated by the PST model 
described previously.

A. DRL Description
For each episode, the RL agent is initially randomly placed 

in a penalty region of the state space as defined in Table I and 
must learn to navigate using a pre-defined number of state 
transitions to improve grid security and load served.  Each step 

of the sequence is constrained to one discrete transition (increase 
or decrease) in a single generator or to maintain status quo.  
During training the RL agent will use reward signals received 
for actions taken from the current state to update its navigation 
policy, indexed by state, action pairs. Through this training 
process, the RL agent learns to navigate according to the 
resulting MDP transition matrix, which is enforced as part of the 
MDP environment and yet not directly visible to any navigating 
agent.

B. RL Agent Model Structure
For learning the RL agent uses q-learning [7] implemented 

using a deep neural network, also called a Deep Q-Network 
(DQN) [8]. The RL agent model and software for this research 
was extended from Bailey and colleagues for navigation in a 
transmission grid environment [9]. The final score for each 
navigation trajectory (also called episode) of length 𝑛 is 
determined using Eq. (1).

∑𝑛
𝑖=1 𝑄(𝑆𝑖,𝐴𝑖) 

where 𝑄(𝑆𝑖,𝐴𝑖) is the approximated expected reward for taking 
action 𝐴𝑖 while in state 𝑆𝑖. The approximate expected reward is 
updated during learning according to Eq. (2).

𝑄(𝑆𝑖,𝐴𝑖) = 𝑄(𝑆𝑖,𝐴𝑖) +𝛼 𝑅(𝑆𝑖+1) + 𝛾 max
𝑎

𝑄(𝑆𝑖+1,𝑎) ― 𝑄(𝑆𝑖,𝐴𝑖) 

where 𝛼 is the learning rate, 𝛾 is the discount rate, 𝑅(𝑆𝑖+1) is the 
reward received at step 𝑖 + 1 (arriving at state 𝑆𝑖+1) after taking 
action 𝐴𝑖 from state 𝑆𝑖, and 𝑎 ranges over the actions that can be 
taken at step 𝑖 + 1 when the environment is at state 𝑆𝑖+1. Thus, 
the RL agent learns to account for expected future reward 
discounted by 𝛾. The immediate reward (𝑅(𝑆𝑖)) for arriving at 
state 𝑆𝑖 resulting from taking action 𝐴𝑖―1 while in state 𝑆𝑖―1is 
shown in Eq. (3).

𝑅(𝑆𝑖) =

𝑓(𝑆𝑖)𝑙(𝑆𝑖)

max
𝑗

𝑓 𝑆𝑗 𝑙 𝑆𝑗
+ 𝑓(𝑆𝑖) if 𝑓(𝑆𝑖) = 1

𝑓(𝑆𝑖)𝑙(𝑆𝑖)

max
𝑗

𝑓 𝑆𝑗 𝑙 𝑆𝑗
otherwise



where 𝑓(𝑆𝑖) is the security condition (either feasible, penalty or 
failure) and 𝑙(𝑆𝑖) is the load served for 𝑆𝑖. When 𝑆𝑖 is in the 
feasible region (see Table I and Fig. 3), 𝑓(𝑆𝑖) = 1, and when 𝑆𝑖 
is in the failure region, 𝑓(𝑆𝑖) = 0. For 𝑆𝑖 in the penalty region, 𝑓
(𝑆𝑖) ranges linearly between 0 (where it touches the failure 
region) and 1 (where it reaches the feasible region). Note that if 
a failure state (defined in Tablel I),  is reached due to an action 
choice, then navigation is stopped and no further reward 
received. Navigation is not stopped when the maximal reward is 
received, as part of this research is to train the RL agent to 
recognize when to stop and also to minimize the number of 
actions taken during navigation. This reward serves as the 
objective for the RL agent navigation during learning and is also 
used by the greedy agent for its navigation. The reward space 
for the same slice shown in Fig. 2 and disaggregated in Fig. 3 is 
shown in Fig. 4.

Security 
Metric

Security Condition Type of 
Region

Bus Voltage
0.95 pu  min(Vbus)

-and-
max(Vbus)  1.05 pu

feasibility

Line Flow Line_Flow  4 pu feasibility
Transient 
Stability

125 ms  min(tcrit) feasibility

Small Signal 
Stability

7 %  damping_ratio feasibility

Bus Voltage
0.85 pu  min(Vbus) < 0.95 pu

-or-
1.05 pu < max(Vbus)  1.15 pu

penalty

Line Flow 4.0 pu < max(line flow)  4.5 pu penalty
Transient 
Stability 100 ms  min(tcrit) < 125 ms penalty

Small Signal 
Stability 1.5 %  damping_ratio < 7 % penalty

Bus Voltage
min(Vbus) < 0.85 pu

-or-
1.15 pu  < max(Vbus)

failure

Line Flow 4.5 pu < max(line flow) failure
Transient 
Stability min(tcrit) < 100 ms failure

Small Signal 
Stability damping_ratio < 1.5 % failure



Fig. 4. Two-dimensional Slice (at G3 = 1 pu) of Reward Space for Navigation, 
where Unstable Is Shown in Red (with Reward Value of 0), Feasibility Is 
Shown in Green (with Feasibility of 1 and Reward Value between 0.5 and 1.0) 
and All Other States in Yellow Are Used as Starting States (with Reward 
Values Between 0 and 0.5, Inclusive).

The feasibility condition, 𝑓(𝑆𝑖) in Eq. (3) and shown as part 
of the reward in Fig. 4, is defined using the minimum of each of 
the operational security measure penalty conditions: bus voltage 
(𝐵𝑉), line flow (𝐿𝐹), transient stability (𝑇𝑆), and small signal 
stability (𝑆𝑆𝑆), defined in Table I. Thus, the values shown in Fig. 
4 are composed from the minimum of values shown in Fig. 3 
multiplied by the load served, 𝑙(𝑆𝑖), and normalized once again 
to range between 0 and 1, inclusive. Note that the penalty 
conditions (see Table I) are normalized such that they range 
between between 0 and 1, inclusive, individually, where 
feasibility occurs when the combined penalty is equal to 1 and 
unstable dispatch conditions have a value of 0. Fig. 4 shows a 2-
D slice of the reward space environment within which the agents 
navigate, matching the conditions used in Fig. 2 and Fig. 3.

A random starting location was selected for each episode 
during testing.  The same initial state value was use used for both 
Greedy and Random agents as well. Tests were conducted using 
all possible starting states for results presented in this paper. All 
starting locations were chosen from within the 3-D penalty area 
identified in Table I (and shown in yellow in Fig. 4).  During 
training, each starting location was randomly chosen to prevent 
the RL agent from over-training on any subset of the entire set 
of starting states.  It also prevents the game from ending before 
any agent’s first step, as it would if the initial condition were 
placed in the unstable region.

C. ML Model Implementation
A simple feedforward neural network architecture consisting 

of two dense layers was used in the RL agent DQN model. The 

RL agent is implemented in python using the PyTorch deep 
learning libraries [10] on three different GPU systems.

Following DQN learning, approximate expected reward is 
defined in Eq. (3). To promote exploration ε-greedy is used, 

defined as, 𝜀𝑖 = 𝜀min + (𝜀max ― 𝜀min)𝑒―𝑖
𝛿 for each episode 𝑖 

during training, which means that there will always be at least 
𝜀min stochastistity (or randomness) in action choice [11]. We did 
not optimize network structure or hyperparameters for this 
effort, but these will be addressed in future work. The RL agent 
model parameters are listed in Table II.

TABLE II. RL AGENT MODEL PARAMETERS

For more details on this DQN algorithm and software, see 
Bailey and colleagues [9].

IV. METHOD OF RL AGENT TRAINING

The RL Agent is trained using 15,000 navigation episodes 
consisting of a maximum of 50 steps (or actions). A rolling 
replay memory buffer of 50,000 episodes is maintained, from 
which 1,024 samples are randomly chosen for training. Policy 
target update is delayed by 50 episodes (i.e., the RL agent policy 
is re-trained after 50 episodes).

A. Benchmark Comparisons
To measure how well the trained RL agent performs, it is 

compared it to both Random and one-state-look-ahead Greedy 
agents. The Random agent serves as a lower bound for 
comparison to the RL agent. The Random agent is constrained 
to make only a single discrete state transition per step. The 
Greedy agent uses the reward information for the current state 
as well as all neighboring state rewards to form its Decision 
Policy, i.e., it will always navigate to the next state with highest 
reward, even if it means staying put. We expect that the RL agent 
should approach, and possibly even surpass the Greedy agent’s 
performance given enough training and sufficient grid 
environment complexity.

V. RESULTS AND CONCLUSIONS

Table III contains comparison results for navigation in the 
transition grid environment for the trained RL agent, the 
Random agent and the Greedy agent across 5,180 episodes (one 
for each possible starting state dispatch in the penalty region 
defined in Table I) where there is no further learning occurring 
in the RL agent after training.

Parameter Value
𝛾 (Discount Rate) 0.8
𝛼 (Learning Rate) 0.00025

𝜀min / 𝜀max 0.1 /  0.9
𝛿 (𝜀 Decay Rate) 1000
Replay Memory 50,000

Target Update Delay 50



TABLE III. FEASIBILITY-UNSTABLE-PENALTY PERCENTAGE 
COMPARISON FOR ALL AGENTS

The results in Table III for the RL agent are after 15,000 
episodes of training, which is not sufficient to match the Greedy 
agent, even for this simple environment. During learning, the RL 
agent improves is cumulative reward value. In these results, the 
RL agent can achieve 93.08% of the maximal feasible servable 
load as compared with 83.74% and 74.06% for the Greedy and 
Random agents, respectively. Fig. 4 shows a histogram for all 
three agents with respect to cumulative reward across all 
trajectories during testing.

Fig. 5. Cumulative reward histograms for each agent (RL – top, Random – 
middle and Greedy – bottom) during testing (5,180 episodes).

An example trajectory for each of the three agents is shown 
in Fig. 6. In this example, both Greedy and RL agents navigate 
from a starting dispatch state (shown with an open circle) to a 
safer dispatch state (shown with an “X”) moving to feasibility 
(color changing from red to green) along the way, while 
increasing security and load served. The Random Agent moved 
about randomly for a while before encountering an unstable 
state, at which point navigation is stopped.   As the agent 
transitions, its reward at each state is proportional to the grid 
security at that state.

Fig. 6. Cumulative reward histograms for each agent (RL – top, Random – 
middle and Greedy – bottom) during testing.

VI. FURTHER WORK

Future work includes expanding the dimensionality, use of 
model-based approaches, and moving to continuous action 
spaces for generation control.
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