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Abstract—Grid operating security studies are typically
employed to establish operating boundaries, ensuring secure and
stable operation for a range of operations under NERC guidelines.
However, if these boundaries are violated, the existing system
security margins will be largely unknown. As an alternative to the
use of complex optimizations over dynamic conditions, this work
employs the use of reinforcement-based machine learning to
identify a sequence of secure state transitions which place the grid
in a higher degree of operating security with greater static and
dynamic stability margins. The approach requires the training of
a machine learning agent to accomplish this task using modeled
data and employs it as a decision support tool under severe, near-
blackout conditions.
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1. INTRODUCTION

During near blackout conditions, grid operators may be able
to restore the system to a safe condition using a Machine
Learning (ML) real-time decision support tool. Doing so would
require the ability to transition (or dispatch) the grid into a
‘good’ state, defined as a unique dispatch where the grid has a
high margin of operational security and is serving a near
maximum amount of load. Under severe emergency conditions,
it may not be possible to determine this operating point using
optimization, nor might there be sufficient time to find it by
study.  Additionally, when operating outside of planned
operating criteria, an improved dispatch solution requires
following a path from the current state to the final state to ensure
avoidance of instabilities or other detrimental operating
conditions. Therefore, this paper presents an alternative
approach to improve grid security through a series of
incremental dispatches using Reinforcement Learning (RL).
Each agent used in this research is referred to as a navigable
player since it operates inside a power grid simulation
environment, but more strictly it represents the decision process
to change the overall grid dispatch to an improved state of
security while serving as much load as possible, near-maximum
if achievable. The RL method offers the potential of a speedy
solution, with a high probability of achieving a secure, near-
optimal solution. The RL agent selects incremental changes in
the dispatch which represent a secure transition path from the
current state to the final state, all the while improving upon load
served when possible.
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This work formalizes these transitions as a Markov Decision
Process (MDP). A MDP consisting of 1) states, 2) actions to
change state, 3) a transition matrix containing probabilities for
transitioning from on state to another with respect to a given
action and 4) immediate reward received after transitioning from
one state to another. The MDP provides a formal specification
for reinforcement learning in a simulation, or game,
environment. In this research each agent choses an action from
the current state to enact a change in the state and environment,
and more specifically the RL agent learns to improve its choice
of action over time. To assess the security of the grid during
changes in dispatch we employed specific security metrics to
ensure safe transitions during off-nominal operation, and this is
a key difference between this and prior work [1-3]. The RL agent
learns to navigate the MDP state space by increasing security
measure values with the goal of increasing margins from
catastrophic boundaries in the operational environment.

II. POWER GRID MODEL

To train and deploy the RL agent, a simplified dynamic
power grid model was developed. The power system is a an
asymmetric, three-area, three generator system which exhibits
sufficient complexity to demonstrate the need for the RL agent
to navigate in achieving its objective of increasing operational
security and improving load served, while avoiding instabilities.
Three control dimensions define the state space; these are the
dispatch outputs of generators 1, 2 and 3. Total system load was
automatically scaled to ensure it was equal to total system
generation plus losses for each dispatch state. Operational
security metrics were determined using Power System Toolbox
(PST) [4] analysis running on MATLAB® and imposed onto
each discrete state. Security metrics include minimum and
maximum bus voltages, minimum critical clearing time,
maximum line flow, and minimum damping ratio. The
objective of each agent is to maximize the system load served
while maintaining a sufficient margin of operational security.

A. Grid Model and Topology

The grid topology utilized for this work is shown in Fig. 1.
A three-dimensional discrete state space was developed of size
253. The RL agent’s objective is to incrementally adjust the
system dispatch in a manner that increases system load while
simultaneously improving system security.
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Fig. 1. System Toplogy for Agent Navigation and Training.

System security metrics were made available to navigating
agents for limited feedback during the navigation process. Fig.
2 shows a 2-D slice of this state space, holding Generator 3
power output constant at 1.0 pu. Time domain simulation was
replaced with eigen-analysis and the use of equal area criterion
[5, 6]. The upper region of the panels in Fig. 2 (marked with
x’s) did not result in converged load flows, and were interpreted
as unsecure dispatches, whereas dots represent converged load
flows.
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Fig. 2. Two-Dimensional Slice of a 3-D State Space (Disaptch) for the Power
System Shown in Fig. 1.

The following bulleted list describes the computation of each
security measure.

e Bus Voltage: The voltage contours shown in Fig. 2
represents the minimum of all nine bus voltages as
determined by load flow for each state. There were no
conditions that resulted in overvoltage conditions for this
system.

¢ Line Flow: The line flow contours are represented as the
maximum line flow for all lines at each state, as
determined by a load flow analysis.

e Transient Stability: Critical
calculated for each generator, for each state, using a
Thevenin system reduction.

clearing time was

¢ Small Signal Stability: For each state, the dynamic grid
models were linearized, eigenvalues found, and damping

ratios calculated.

Fig. 2 is decomposed into four panels, shown in Fig. 3.
Within each panel of Fig. 3, the green region represents adequate
system security, the yellow region represents stable but poor
grid security, and the red region represents unacceptable system

security.
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Fig. 3. Constraints Shown Indiviually Here Are Deconstructed from Fig. 2.
Colors Identify the Reward Regions Defined in Table I. Green Represents a
Feasible Region, in which the Optimal Exists. Yellow Regions Are Penalty
Regions where Operation Is Possible but Undesired. Red Represents Instability

or Failure.

The boundaries for these regions are defined mathematically

in Table I.



TABLE 1. SECURITY REGIONS: FEASIBILITY, PENALTY AND FAILURE
Security Security Condition Type of
Metric Region
0.95 pu < min(Vbus) feasibility
Bus Voltage -and-
max(Vbus) < 1.05 pu
Line Flow Line_Flow <4 pu feasibility
Transient 125 ms < min(tcrit) feasibility
Stability
Small Signal 7 % < damping_ratio feasibility
Stability
0.85 pu < min(Vbus) < 0.95 pu penalty
Bus Voltage -or-
1.05 pu <max(Vbus) < 1.15 pu
Line Flow 4.0 pu < max(line flow) <4.5 pu penalty
Transient . . penalty
Stability 100 ms < min(tcrit) < 125 ms
Small Signal N . . o penalty
Stability 1.5 % < damping_ratio <7 %
min(Vbus) < 0.85 pu failure
Bus Voltage -or-
1.15 pu < max(Vbus)
Line Flow 4.5 pu < max(line flow) failure
Transient . . failure
Stability min(tcrit) < 100 ms
Small Signal . . o failure
Stability damping_ratio < 1.5 %

B. Reward Region and Security Condition Specification

The security constraints shown in Fig. 2 were converted to
security condition equations for use by agents during navigation
and learning. These equations were derived as listed in Table I,
such that the instantaneous MDP reward for navigation in
feasibility regions is larger than that for penalty regions which
in turn is larger than that of failure regions. The term feasibility,
shown in Table I was selected as an analogy to an optimization
problem. In all cases, the optimal state, the state with the highest
reward, is state within the feasible region that is serving the
highest amount of system load.

C. Grid, State Space Dimensionality

The viability of the technique presented is dependent upon
the ability of the RL agent to successfully navigate higher
dimensional spaces.  These dimensions arise from the
independent control of additional generators, loads, and
topological configurations. Although this paper is considering
a simplified system with only three control dimensions, higher
dimensional systems are currently being developed which
utilize transfer learning and the use of variable navigation
control step size(s).

III. MACHINE LEARNING MODEL

In this research, we employ deep reinforcement learning
(DRL) to learn appropriate actions to take for a given grid state
determined using the data samples generated by the PST model
described previously.

A. DRL Description

For each episode, the RL agent is initially randomly placed
in a penalty region of the state space as defined in Table I and
must learn to navigate using a pre-defined number of state
transitions to improve grid security and load served. Each step

of the sequence is constrained to one discrete transition (increase
or decrease) in a single generator or to maintain status quo.
During training the RL agent will use reward signals received
for actions taken from the current state to update its navigation
policy, indexed by state, action pairs. Through this training
process, the RL agent learns to navigate according to the
resulting MDP transition matrix, which is enforced as part of the
MDP environment and yet not directly visible to any navigating
agent.

B. RL Agent Model Structure

For learning the RL agent uses g-learning [7] implemented
using a deep neural network, also called a Deep Q-Network
(DQN) [8]. The RL agent model and software for this research
was extended from Bailey and colleagues for navigation in a
transmission grid environment [9]. The final score for each
navigation trajectory (also called episode) of length n is
determined using Eq. (1).

=1 Q(S14) (1

where Q(S;,4;) is the approximated expected reward for taking
action A; while in state S;. The approximate expected reward is
updated during learning according to Eq. (2).

Q(Su41) = Q(Sp4) T2 R(Si1) + ¥y max Q(Si+1,a) — Q(Sud)|  (2)

where « is the learning rate,  is the discount rate, R(S;+) is the
reward received at step { + 1 (arriving at state S;t1) after taking
action A; from state S;, and a ranges over the actions that can be
taken at step { + 1 when the environment is at state S;+1. Thus,
the RL agent learns to account for expected future reward
discounted by v. The immediate reward (R(S;)) for arriving at
state S; resulting from taking action A;—1 while in state S;_1is
shown in Eq. (3).
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where f(S;) is the security condition (either feasible, penalty or
failure) and [(S;) is the load served for S;. When S; is in the
feasible region (see Table I and Fig. 3), f(S;) = 1, and when S;
is in the failure region, f(S;) = 0. For S; in the penalty region, f
(8;) ranges linearly between O (where it touches the failure
region) and 1 (where it reaches the feasible region). Note that if
a failure state (defined in Tablel I), is reached due to an action
choice, then navigation is stopped and no further reward
received. Navigation is not stopped when the maximal reward is
received, as part of this research is to train the RL agent to
recognize when to stop and also to minimize the number of
actions taken during navigation. This reward serves as the
objective for the RL agent navigation during learning and is also
used by the greedy agent for its navigation. The reward space
for the same slice shown in Fig. 2 and disaggregated in Fig. 3 is
shown in Fig. 4.
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Fig. 4. Two-dimensional Slice (at G3 = 1 pu) of Reward Space for Navigation,
where Unstable Is Shown in Red (with Reward Value of 0), Feasibility Is
Shown in Green (with Feasibility of 1 and Reward Value between 0.5 and 1.0)
and All Other States in Yellow Are Used as Starting States (with Reward
Values Between 0 and 0.5, Inclusive).

The feasibility condition, f(S;) in Eq. (3) and shown as part
of the reward in Fig. 4, is defined using the minimum of each of
the operational security measure penalty conditions: bus voltage
(BV), line flow (LF), transient stability (T'S), and small signal
stability (SSS), defined in Table I. Thus, the values shown in Fig.
4 are composed from the minimum of values shown in Fig. 3
multiplied by the load served, [(S;), and normalized once again
to range between 0 and 1, inclusive. Note that the penalty
conditions (see Table I) are normalized such that they range
between between 0 and 1, inclusive, individually, where
feasibility occurs when the combined penalty is equal to 1 and
unstable dispatch conditions have a value of 0. Fig. 4 shows a 2-
D slice of the reward space environment within which the agents
navigate, matching the conditions used in Fig. 2 and Fig. 3.

A random starting location was selected for each episode
during testing. The same initial state value was use used for both
Greedy and Random agents as well. Tests were conducted using
all possible starting states for results presented in this paper. All
starting locations were chosen from within the 3-D penalty area
identified in Table I (and shown in yellow in Fig. 4). During
training, each starting location was randomly chosen to prevent
the RL agent from over-training on any subset of the entire set
of starting states. It also prevents the game from ending before
any agent’s first step, as it would if the initial condition were
placed in the unstable region.

C. ML Model Implementation

A simple feedforward neural network architecture consisting
of two dense layers was used in the RL agent DQN model. The

RL agent is implemented in python using the PyTorch deep
learning libraries [10] on three different GPU systems.

Following DQN learning, approximate expected reward is
defined in Eq. (3). To promote exploration &-greedy is used,

defined as, & = €min + (Emax — Emin)€ ° for each episode i
during training, which means that there will always be at least
Emin stochastistity (or randomness) in action choice [11]. We did
not optimize network structure or hyperparameters for this
effort, but these will be addressed in future work. The RL agent
model parameters are listed in Table II.

TABLE II. RL AGENT MODEL PARAMETERS
Parameter Value
Y (Discount Rate) 0.8
@ (Learning Rate) 0.00025
Emin / €max 0.1/ 09
8 (€ Decay Rate) 1000
Replay Memory 50,000
Target Update Delay 50

For more details on this DQN algorithm and software, see
Bailey and colleagues [9].

IV. METHOD OF RL AGENT TRAINING

The RL Agent is trained using 15,000 navigation episodes
consisting of a maximum of 50 steps (or actions). A rolling
replay memory buffer of 50,000 episodes is maintained, from
which 1,024 samples are randomly chosen for training. Policy
target update is delayed by 50 episodes (i.e., the RL agent policy
is re-trained after 50 episodes).

A. Benchmark Comparisons

To measure how well the trained RL agent performs, it is
compared it to both Random and one-state-look-ahead Greedy
agents. The Random agent serves as a lower bound for
comparison to the RL agent. The Random agent is constrained
to make only a single discrete state transition per step. The
Greedy agent uses the reward information for the current state
as well as all neighboring state rewards to form its Decision
Policy, i.e., it will always navigate to the next state with highest
reward, even if it means staying put. We expect that the RL agent
should approach, and possibly even surpass the Greedy agent’s
performance given enough training and sufficient grid
environment complexity.

V. RESULTS AND CONCLUSIONS

Table III contains comparison results for navigation in the
transition grid environment for the trained RL agent, the
Random agent and the Greedy agent across 5,180 episodes (one
for each possible starting state dispatch in the penalty region
defined in Table I) where there is no further learning occurring
in the RL agent after training.



TABLE III. FEASIBILITY-UNSTABLE-PENALTY PERCENTAGE

COMPARISON FOR ALL AGENTS

The results in Table III for the RL agent are after 15,000
episodes of training, which is not sufficient to match the Greedy
agent, even for this simple environment. During learning, the RL
agent improves is cumulative reward value. In these results, the
RL agent can achieve 93.08% of the maximal feasible servable
load as compared with 83.74% and 74.06% for the Greedy and
Random agents, respectively. Fig. 4 shows a histogram for all
three agents with respect to cumulative reward across all
trajectories during testing.

Histogram of Cumulative Reward for each Trajectory during Testing

o 10 20 0 0 50
Cumutative Reward

Fig. 5. Cumulative reward histograms for each agent (RL — top, Random —
middle and Greedy — bottom) during testing (5,180 episodes).

An example trajectory for each of the three agents is shown
in Fig. 6. In this example, both Greedy and RL agents navigate
from a starting dispatch state (shown with an open circle) to a
safer dispatch state (shown with an “X”’) moving to feasibility
(color changing from red to green) along the way, while
increasing security and load served. The Random Agent moved
about randomly for a while before encountering an unstable
state, at which point navigation is stopped. As the agent
transitions, its reward at each state is proportional to the grid
security at that state.

Expample Trajectory of RL Agent
and Benchmark Agents

Feasible
Unstable
ML Agent
- Random Agent
- Greedy Agent
Optimal

Fig. 6. Cumulative reward histograms for each agent (RL — top, Random —
middle and Greedy — bottom) during testing.

Agent Feasible % Unstable % Penalty %
Random Agent 18.15 44.98 36.87
RL Agent 97.49 2.39 0.12
Greedy Agent 98.30 0.00 1.70

VI. FURTHER WORK

Future work includes expanding the dimensionality, use of
model-based approaches, and moving to continuous action
spaces for generation control.
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