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Motivations & lllinois Basin Decatur Project (IBDP) data
Event detection and phase arrival time estimation
Fault plane analysis

Summary




Background & Motivations

¢ Motivations

o Fluid injection or withdrawal causes changes in pore pressure,
resulting in induced seismicity (IS) during subsurface energy
activities (geologic carbon storage, enhanced geothermal
system, wastewater injection, etc.)

o Machine learning (ML) has been successfully developed and
applied for data analysis of (micro-)seismic data (e.g., event
detection, phase arrival time, source locations)

¢ Goals

Induced (human-caused) seismicity

Changes in solid stress
due to fluid extraction or injection
(poro-thermoelastic effects,
Direct fluid pressure changes in gravitational loading)

ffecsof it KRy

diffusion) Permeable
reservoir/aquifer

Increase in pore
pressure along

fault (requires Change in loading
Permeable high-permeability conditions on fault

reservoir/ pathway) (no direct hydrologic
aquifer connection required)

USGS: http://earthquake.usgs.gov/Research/induced/modeling.php

(1) Develop/apply machine-learning techniques for seismic wave data analysis and event
detection at lllinois Basin Decatur Project (IBDP) site (geologic carbon storage)

(2) Delineate fracture and failure mechanisms associated with microseismic data


http://earthquake.usgs.gov/research/induced/modeling.php
http://earthquake.usgs.gov/research/i

‘ lllinois Basin CCS Projects
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Microseismic data at IBDP

Williams-Stroud et al. (SEG 2019)
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Note: old (incorrect) located events

e |llinois Basin Decatur Project (IBDP, 3 yrs): 1 MMT CO,

e Industrial Carbon Capture & Storage (ICCS, up to 5
yrs): 3-5.5 MMT CO,

e CarbonSAFE: 50+ MMT CO,

e Extensive integrated site characterization and
monitoring investigations

e Using the initial microseismic data, we aim at
improving the detection of low-magnitude,
unidentified events & locations to discover
undetected/hidden fault/fracture systems

e Characterize microseismic waveforms, the relations
among the events, and reliable identification of
microseismic sources integrated with
forward/inverse modeling



MS Waveform Data at the IBDP Site

Raw (unprocessed) continuous data

O O O O

O

Big data (~ 7TB for 3 months out of a total of 100’s TB for 3 yrs)
2 kHz sampling rate
# of traces: 84-94 (inconsistency at an early injection period)

4 channel data on two PS3 sensors in injection reservoir formation
and 2-3 channels on GM geophones (relatively upper formations)

Only vertically oriented sensors at an early phase

Processed data & catalog (~3 yrs injection)

O

@)

O

@)

Detected event (processed 2s window, ~ 19K events, 3 channel
(Z,H1,H2)

A small # of located events (~ 5K events with source locations)
Relatively low magnitude (mostly <0, max magnitude = ~1.5)

Processed 2s window data have been shifted from original data
(needed to generate event data for machine learning separately)
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Fig. 1. Subsurface array configuration. Distance units are feet, Z axis is referenced
to mean sea level.
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Event detection and phase arrival time estimation
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Convolutional Neural Networks

5| -4|0] 8
1, 0(-1 ‘
*k 1 0 _1 —_ 10 -2 2 3 yth=
1101-1 0 2 4 7 ]
3| -2]-3 16 Siliadin, St ‘
Input Filter (Kernel) Feature map I ResNet
Feature Extraction Classification
Convolution Pooling Commiution Pooling Fully Fully Output Predictions
+ RelU | + Rell Connected Connected
L O i
r..r.,._ m ! r-—i- Bird (0}
e R = e I
“total 25 _' farget CHUETRLE |
Input Convolution + Pooling layers act as Feature Extractors from the
3 RGB channels, input image, while fully Connected layer acts as a classifier.
Identical to 3 channel (Z,H1,H2) waveform http://cs231n.github.io/convolutional-networks/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/



http://cs231n.github.io/convolutional-networks/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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Recent Deep Learning Models for Seismic Data
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Supervised machine learning — Event detection using CNN

11
Small data Inputj_l.(”:hf;\nnels Event
e Input Data: E ]
- Three-channel (Z,E,N) waveform data e
- 684 located events samples s
- Located events cataloged for Feb to April, 2012 k{
- 15300 noise data : |

e Data Processing:
- Bandpass filter (10 - 400 Hz)

= YWAVelTOlIl] () D E DO Alll ] B0 - . Original
= A s g spectrogram
- Continuous waveform data: 1 s moving windows - .
¢ Training/validation/teSting Sets D25 050 075 100 125 150 175 o0 00 -M:'sj l1'0 15 20 25
Time [sec] Amplitude le-7

e Dataset augmentation:
- Generate additional event windows by shifting
2 sec window to locate signals at varying
locations within 2 second window

1000

» _|Rescaled ;
spectrogramj |

Frequency [Hz]
el

&

(=]

T
Frequency
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CNN Architecture for Event Detection

Feature vector from Random Forest
on 3 channel data

Feature Importance Per Channel

T
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Dense
(10x1)

Option

——
: (Input) I | \‘
_— Dense

{ MFCC

l (3x100)

output
.‘> (2x1)
Dense
(25x1)
—
- Convolution 2D
Dense Max Pooling
(100X1) [  Batch Normalization
pectrograms (input) 4 Cony layer Flatten | HEEEN oropou
(60x60x3) blocks (2048x1)
CNN Block

¢ |nput Data:
- Rescaled spectrogram with log transformation
- Mel-Frequency Cepstrum Coefficients (MFCC)
e CNN architecture:
- Simple (good for small training data)
- MFCC input can be used as physical constraint
(Physics-constrained ML framework)
e Model training:
- The best model based on validation data

e Trained model:

- detect events for continuous waveform data
from Feb to March in 2012 (cluster #2)
- 1 second moving window

0.100 =
00751 1 :
0.050 :
0.025
0.000 - aaay

—0.025 H

—0.050

T T T T
2012-02-27T20:11:14 20:11:16 20:11:18 20:11:20 20:11:22
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Original
spectrogram

=== CNMN+MNormalization - Training loss

—— CHNN+Mormalization - Validation loss

=== CHNN+MNormalization+MFCC_Reduced - Training loss
—— CHNN+Mormalization+MFCC_Reduced - Validation loss
=== CMNMN+MNo_Mormalization - Training loss

—— CHNN+Mo_Mormalization - Validation loss
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ML models with rescaled spectrogram input
dramatically improved model accuracy compared
to ML model with original spectrogram

Training time is super-fast (~15 min on a laptop
with one GPU) due to a small CNN architecture
(EQTransformer: O(89) hrs using 4 Tesla V100
GPUs)

CNN only tends to reach a plateau (no more
learning) early (epochs = 40-50)

CNN + full MFCC seems to learn more
continuously over 100 epochs

In this work we used CNN only for event
detection



Event Detection

. Transition
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« CNN model tends to pick events more accurately than detected events in catalog
» CNN model detects more events after active event period (02/27/2012-02/29/2012)

» Due to relatively small # of labelled data CNN model performs very well for event
detection



‘ Waveform characteristics: Active vs. transition periods (March 01-02)
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Active period (Feb27-29): 2s window events

MWWW\W,WW *‘*ﬂ' ]
T
s WWMWWWMMNW Wt B

slow slipping
sequence of slow slip events”

of fault zone in inverse modeling

x| B
#r

230
prevd =] wo | Fam) x
o s :
a0 S — — :
o010 ™
a3
a0 E

Long-period long-duration (LPLD) seismic events

(]
x

L

1

i

Represent slow shear slip (e.g., hydraulic fracturing)
Observed in the literature (e.g., Das and Zoback, 2013) where
natural fracture density is high, likely caused by high pore

pressure and/or high clay contents (i.e., low permeability) =>

Tend to be observed “only on faults large enough to produce a

This observation needs to be used to parameterize the thickness

&

Transition period

45min window

17 min window

0159 (Crs32v) P S 3 ]
_.PS3 2V - 03 -—FE 31V
0.104 02
0,054 01
L S ————— 4 L = =
5 4 0.1
04 -02
154 -03
_PS3 1V 03
10 P
S 3 = 1 o
054
N 01
N o
a0 S ' g o KT |
L i |
~0.05
-01
01079 -02
-0.15 3
01541 -03
..PS3_1 H1 03
010
- 02
0.05
01
veo I 4 e
T hd ' 00
~0.05 o1
~0.10 02
0154 0.3
03
010
- 02
0.05
01
0.001 Lt sy T 00
~0.05 o1
—-0.10 —02
-015 4 —03
015 9 03
_PS3_1 H2 ST
010 - 02
0.05 4 01
" - aad Ll N 0o I |
0.00 . "y $ A
™ ™ —
~0.05 -01
o -02
—03
0154
..PS3 2 H2 03 S
101 P S 3 = 027
0.05 1 014
0.00 00
—-0.05 —01
04 -02
r r r T -03
2012-03-01T15:20:00 15:30:00 15:40:00 15:50:00



Phase Arrival Time

Training data for arrival times &
Transfer learning of PhaseNet

Arrival time data in Catalog are different from event
times of continuous waveform data

PhasePAPy (Chen & Holland, 2016): P-arrival pick
based on AICD

AR pick (obspy): S-arrival pick based on
autoregression-AlC

These picking results are the best to match manual
picking of arrival times of continuous waveform
From automatic picks, ~80% (419) of Feb-Mar
dataset was considered as correct picks and used to
re-train the PhaseNet model

A part of the remaining 20% was corrected
manually for model validation (mean loss = ~0.02)
Validation accuracy: P (0.906) and S (0.942)
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Motivations & lllinois Basin Decatur Project (IBDP) data
Event detection and phase arrival time estimation
Fault plane analysis
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Sub-cluster Patterns over Time & Focal Mechanism Analysis using USGS HASH
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Sub-cluster Patterns over Time )
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Sub-cluster Patterns over Time
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Sub-cluster Patterns over Time
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Summary

Rescaled spectrograms as input to ML training dramatically improved ML accuracy

Simple CNN models trained with located event data only were able to detect events
accurately and efficiently

Re-trained PhaseNet has a relatively high accuracy of phase arrival time picking
CNN model was able to detect long period long duration patterns (cluster #2)

During transition period, seismic events tend to be long and overlapped (i.e., slow
slip and multiple events) and PS3-2 tends to be higher amplitude than PS3-1 =2 very
distinctive from active and post periods

Based on LPLD conceptual model, transition waveform characteristics indicate that
MS events are likely associated with high density fractures surrounding the main
fault after pore pressure increase along the main fault

Sequence of sub-clusters of MS events indicates the directional stability within the
fault architecture, which matches focal mechanism analysis results
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Thank You!




Unsupervised ML — Fingerprint method using NMF-HMM

25
Waveform spectrogram
. . . —t m)
e Fingerprint-based clustering method: e k*
Pattern of state sequences forms G = (FxT)
o o Time (bins
flngerprmts Fxk Non-negative Matrix Factorization

o Clustering: acoustic/seismic state -~
mechanical behaviors

Spectrogram (Short Time Fourier Transform)
Non-negative Matrix Factorization Dictionary

. (features) ‘
Hidden Markov Model (S states) _Hidden Markov Model (SXT)
K-means clustering T T o R

Activation coefficient
importance of features

Fingerprints (5.1xS;) > K-means cluster

Ref: Holtzman et al. (Sci. Adv. 2018)




26 I Unsupervised machine learning — fingerprint based clustering results
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27 I Unsupervised machine learning — fingerprint based clustering (cluster #4)

Three groups
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Unsupervised machine learning — fingerprint based clustering (cluster #4)
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