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Introduction: PCA

 Principal Components Analysis fundamental tool 
for data analysis
o Exploratory data analysis
o Dimension reduction
o Data compression 
o Missing data imputation



Introduction: Low-rank PCA

 PCA procedure can described as

 Can be shown to be maximum likelihood estimate of model

 We will work this interpretation of PCA, but there are others

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. 
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Original Data: 
n x p

Low-rank
representation of rows:
n x k

Low-rank representation of
relation between columns:
p x k  

(MVN = multivariate normal)



Introduction: Copulas

 Copulas are methods for generically modeling joint 
distribution between differing variable types

 Copulas create a function that joins the CDF for 
different variables

 Separates modeling into two steps: 
o Modeling marginal distributions 
o Modeling relation between marginal uniform RV's
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Marginally uniform(0,1)

Copula function that defines relation 
between marginal uniform(0,1) variables



Introduction: Gaussian Copula

 Gaussian copula popular model

 Relation between ordered values of variables from each 
column same as ordered values of multivariate normal

 Relatively simple to work with 
o Push original values through marginal CDF + inverse CDF of 

standard normal
o Treat as multi-variate normal 
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CDF of multivariate Normal 
with correlation matrix R

Inverse CDF of 
standard Normal



XPCA: PCA for non-normal ordinal data

 Recall that PCA maximum likelihood estimate under assumption 
of multivariate normal data

 We want to relax assumption of multivariate normality by using 
Copula models to model joint distribution across columns

 Copula Component Analysis (COCA) took similar approach, but 
made implicit assumption of all variables being continuous

 We extend results to discrete ordinal variables

Ma, J., & Sun, Z. (2007). Copula component analysis.
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Why use XPCA?

 Decomposition is more robust to outliers in individual 
variables than PCA
o COCA has same feature 

 If all data is continuous, resulting factors will be nearly 
identical between COCA and XPCA

 XPCA makes better use of discrete variables, i.e., binary 
being an extreme case
o COCA does not and has shown no improvement over PCA with 

discrete variables

 We also present method for deriving full conditional 
distribution of missing data

7



XPCA: Basic Model

 Begin with (unobserved) low-rank 
PCA model in copula space

 Latent variables pushed through 
standard normal CDF so they are 
marginally uniform(0,1)

 Values are then pushed through 
different inverse CDF functions for 
each variable observed 
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Latent PCA variable

Final observed value

Transforming
latent value to
observed value

Inverse marginal 
CDF for column j



Likelihood Function: Continuous Variables

 If all variables are continuous, likelihood can be written as 

 Problem: if column j is discrete, then a range of values of U 
lead to the same value of X

 Hoff (2007) showed ignoring this can lead to heavy bias in 
estimated correlations

Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula estimation.
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Likelihood function 
used by COCA



Likelihood Function: Discrete variables

 Define:

 Likelihood function is then:  
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Integrating over range of latent 
variables that leads to observed 
outcome



Fitting the model

 Fit marginal CDF with Empirical Distribution function 
o Results in all variables being treated as discrete, even if originally continuous
o Consistent estimator of any CDF (including continuous variables)
o If all columns are continuous, XPCA solution approaches COCA solution

 Fit PCA parameters using maximum likelihood estimation
 Two algorithms implemented

o Generic L-BFGS implementation
o Custom Alternating Newton's method

 On average, L-BFGS slightly faster (about 2x)
 Alternating Newton's more robust
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Imputing Data: Median Estimate

 According to XPCA model, estimated median of       is 
 We want estimate of  
 Because      and          are monotonic functions, estimated 

median of         is 
 Imputation method used by COCA
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Imputing Data: Mean Estimates

 Once model is fit, can compute

 Estimated expected value is then 

 Estimated means are a kernel-smoothed weighted 
average of all observed values 
o Automatically range respecting
o For properly coded binary variables, mean estimate is 

probability = 1 
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Characterizes full conditional distribution!



Simulated Comparisons

 Simulated low-rank data and 
examined MSE in recovering mean 
structure
o N rows/cols = 50, 100, 200, 400
o Rank = 5
o Error terms

 Scenario 1: all Normal
 Scenario 2: 75% Probit model (i.e. binary), 

25% Normal

 Note that MSE error metric favors 
PCA (directly attempts to minimize)

14

With all Gaussian 
data, PCA does best, 
but advantage decreases
with data size

XPCA has much less 
error when binary 
variables included, 
even as data size gets 
larger



Basketball Data

 Season Statistics for 2015-2016 NBA basketball 
 476 players 
 39 variables

o Season summary statistics
 Games played, # wins for player's team, etc.
 Shots made, assists, rebounds, etc.

o Draft Round/Number
 Draft Numbers 1-30 -> Round 1, 31-60 -> Round 2 + undrafted
 Binary variable: was 1st round pick?

o Others mix of count and continuous data
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Data compiled by Justin Jacobs



Imputed data: Point estimates

 Masked all draft information for 2 players
o Stephen Curry: 1st pick of 1st round
o Allan Crabbe: 1st pick of 2nd round

 Computed rank 3 decomposition and extracted imputed 
"Is first round pick?"

 PCA provides linear estimates of imputed data
o Not constrained to be realistic values

 COCA provides median estimate
o Realistic value but not very informative for binary data!

 XPCA can extract full distribution
o Easily summarized by median/mean/whatever statistic 

desired
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Method Stephen
Curry

Allan 
Crabbe

PCA 36.9 -0.38

COCA 1.0 0

XPCA 
(mean 
method)

1.00* 0.12

True Value 1.0 0.0

*Numerically equivalent to 1



Imputed data: Conditional Distribution

 Can use XPCA to extract 
estimated full conditional 
distribution of missing 
values
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Basketball Data: Cross Validated Rescaled MSE

 Evaluating methods by 20x cross-validated 
Rescale Mean Squared Error
o MSE of each column rescaled by column variance 
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Lowest overall 
Rescaled MSE 
for XPCA

PCA error explodes 
with overfitting

XPCA + COCA also prone
to overfitting, but because range 
restricted, damage to MSE more limited



Future Directions

 Accelerating algorithm
o Randomized methods?

 Adding penalization 
o Improving out of sample error
o Can be simpler to pick penalty than pick rank of decomposition

 Allowing for non-constant 
o Setting       as fixed across columns (a la PCA model) assumes 

each column is equally predictable
o May not be a reasonable assumption for heterogeneous data; 

instead allow        to change by column

 Adding standard errors
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