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. Sandia
Introduction: PCA i) Natona

= Principal Components Analysis fundamental tool
for data analysis

o Exploratory data analysis \

o Dimension reduction

o Data compression
o Missing data imputation

= - j Low Rank Representation
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Sandia
Introduction: Low-rank PCA i) Natona

= PCA procedure can described as Low-rank representation of
.— relation between columns:

N _X - T p x k
arg%{%}lﬂ []IV |2

Original Data: | ju-rank

nxp representation of rows:

nxk
= Can be shown to be maximum likelihood estimate of model

X ~MVNUVT, %)

(MVN = multivariate normal)

= We will work this interpretation of PCA, but there are others

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis.
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Introduction: Copulas ) tsona

Laboratories

= Copulas are methods for generically modeling joint
distribution between differing variable types

= Copulas create a function that joins the CDF for
different variables Marginally uniform(0.)

P(X1> z1,..., Xp > xp) = O(Fx[(z1), ..., Fx, (p))

Copula Model
Copula function that defines relation o
between marginal uniform(0,1) variables _ - - K
. . E ceve
= Separates modeling into two steps: S AL
= KL
o Modeling marginal distributions = T
o Modeling relation between marginal uniform RV's B
0.0 0.5 1.0 1.5 20 25 3.0

Marginal Exponential




Introduction: Gaussian Copula

= Gaussian copula popular model

C(uy...,up|R) = (P~ Luy), .. @'l(up))

N

CDF of multivariate Normal Inverse CDF of
with correlation matrix R standard Normal

= Relation between ordered values of variables from each
column same as ordered values of multivariate normal

= Relatively simple to work with

o Push original values through marginal CDF + inverse CDF of
standard normal

o Treat as multi-variate normal
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XPCA: PCA for non-normal ordinal data i) Lﬁat}dt'es

= Recall that PCA maximum likelihood estimate under assumption
of multivariate normal data

= We want to relax assumption of multivariate normality by using
Copula models to model joint distribution across columns

= Copula Component Analysis (COCA) took similar approach, but
made implicit assumption of all variables being continuous

= \We extend results to discrete ordinal variables

Ma, J., & Sun, Z. (2007). Copula component analysis.




Why use XPCA? ) e

= Decomposition is more robust to outliers in individual
variables than PCA

o COCA has same feature

= |f all data is continuous, resulting factors will be nearly
identical between COCA and XPCA

= XPCA makes better use of discrete variables, i.e., binary
being an extreme case

o COCA does not and has shown no improvement over PCA with
discrete variables

= We also present method for deriving full conditional
distribution of missing data
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XPCA: Basic Model e s
Latent PCA variable

\

= Begin with (unobserved) low-rank Z ~ MVN(UVT, 02)
PCA model in copula space

= Latent variables pushed through Lﬁﬂfgﬁg‘f’o » Uiy = ‘I)(Zij)

standard normal CDF so they are  observed value\

marginally uniform(0,1) X = F-YU;)
J
= Values are then pushed through / \
different inverse CDF functions for Final observed value Inverse marginal

CDF for column j

each variable observed
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Likelihood Function: Continuous Variables i) Natona

= /fall variables are continuous, likelihood can be written as

~ Likelihood function
O =UVTo,Fj|X)= > log (¢(®  (Fj(Xij),u=0bi,0 =0)) = used by COCA

= Problem: if columnj is discrete, then a range of values of U
lead to the same value of X

= Hoff (2007) showed ignoring this can lead to heavy bias in
estimated correlations

Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula estimation.
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Likelihood Function: Discrete variables i) Natona

_ li; = min{wu;; : F_l(ui-):a:i-}
= Define: . ’ !

Tij = max{uz-j : F_l(u,,;j) = $.;,j}

Integrating over range of latent
variables that leads to observed

= Likelihood function is then: / outcome

E(@ UVT a, FJ|X Z / log ) U = 9@',0‘ :0')) dt
(4,5) €

- 3 wsfo(M0) o (M0

(4,5) €
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Fitting the model ) i

= Fit marginal CDF with Empirical Distribution function
o Results in all variables being treated as discrete, even if originally continuous
o Consistent estimator of any CDF (including continuous variables)
o If all columns are continuous, XPCA solution approaches COCA solution

= Fit PCA parameters using maximum likelihood estimation

= Two algorithms implemented
o Generic L-BFGS implementation

o Custom Alternating Newton's method
" On average, L-BFGS slightly faster (about 2x)
= Alternating Newton's more robust
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Imputing Data: Median Estimate )t

= According to XPCA model, estimated median of Z;; is éij
" We want estimate of X;;

= Because @ and F; ! are monotonic functions, estimated
median of Xij is X;; = F7'(®(0y))
= |mputation method used by COCA

—1
i) I
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Imputing Data: Mean Estimates )t

= Once model is fit, can compute

Characterizes full conditional distribution!

= Estimated expected value IS then

~

Z:L‘P(ij — .’Iﬁlﬁ,v,{}, j)

= FEstimated means are a kernel-smoothed weighted
average of all observed values
o Automatically range respecting

o For properly coded binary variables, mean estimate is
probability = 1




Sandia
Simulated Comparisons _ @ oaoes

COCA
* XPCA

0.06

= Simulated low-rank data and

examined MSE in recovering mean ¢° )
With all Gaussian & | )
structure data, PCA does best, ° .
o N rows/cols =50, 100, 200, 400 but advantage decreases - =
with data size S | | | |
@) Rank =5 40 45 5.0 55 6.0
Log N row/col
O Error te rms 75% Binary Variables, 25% Normal

= Scenario 1: all Normal

= Scenario 2: 75% Probit model (i.e. binary), XPCA has much less
25% Normal error when binary

variables included, =<
= Note that MSE error metric favors even as data size gets

PCA (directly attempts to minimize)
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000 001 002

T T T T T
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Log N row/col




Sandia
Basketball Data i) Natona

= Season Statistics for 2015-2016 NBA basketball

N ,“
= 476 players ‘, R
= 39 variables
o Season summary statistics

= Games played, # wins for player's team, etc.
= Shots made, assists, rebounds, etc.

o Draft Round/Number
= Draft Numbers 1-30 -> Round 1, 31-60 -> Round 2 + undrafted
= Binary variable: was 15t round pick?

o Others mix of count and continuous data

Data compiled by Justin Jacobs




Imputed data: Point estimates

Masked all draft information for 2 players
o Stephen Curry: 15t pick of 15t round
o Allan Crabbe: 15t pick of 2" round

= Computed rank 3 decomposition and extracted imputed
"Is first round pick?"

= PCA provides linear estimates of imputed data
o Not constrained to be realistic values
=  COCA provides median estimate
o Realistic value but not very informative for binary data!

= XPCA can extract full distribution

o Easily summarized by median/mean/whatever statistic
desired
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Stephen Allan
Curry Crabbe

PCA 36.9 -0.38
COCA 1.0 0
XPCA 1.00* 0.12
(mean

method)

True Value 1.0 0.0

*Numerically equivalent to 1
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Imputed data: Conditional Distribution ) i

Marginal Distribution of Points Scored

Allen Crabbe's Points
- Stephen Curry's Points

= Can use XPCA to extract
estimated full conditional
distribution of missing
values

I T I I |
0 500 1000 1500 2000

Conditional Distribution of Points

= Allen Crabbe
== Stephen Curry




Basketball Data: Cross Validated Rescaled MSE i) E}dt'es

= Evaluating methods by 20x cross-validated
Rescale Mean Squared Error

o MSE of each column rescaled by column variance

Rank XPCA PCA COCA Mean

1 0.424 0.463 0.482 1.004

0.301 0.353 0.346 1.004

0.249 0.307 0.275 1.004

Lowest overall 0.239 0.266_ 1.004

2
3
4

Rescaled MSE —3 [0.238] 0.345 [0.250] 1.004

for XPCA 6 0.247 1.018 0.287 1.004
7 0.256 0.765  0.285 1.004
8 0.247 1.699 : 004
9 0.293 4.234 0.440 1.004 PCA error exp|odes
10  0.275 4.682 _p.442 1.004 with overfitting

XPCA + COCA also prone //

to overfitting, but because range
restricted, damage to MSE more limited
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Future Directions i) Natona

= Accelerating algorithm
o Randomized methods?

= Adding penalization

o Improving out of sample error

o Can be simpler to pick penalty than pick rank of decomposition
= Allowing for non-constant o

o Setting o2 as fixed across columns (a la PCA model) assumes
each column is equally predictable

o May not be a reasonable assumption for heterogeneous data;
instead allow o to change by column

= Adding standard errors




