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Conventional Transportation Fuels Contain Different
Distributions of Hydrocarbon Classes, Species 

• General requirements for molecular structure of transportation fuels
– Gasoline: short (< C8) branched chains, aromatics, high octane number
– Diesel: long (> C12), straight chains, substituted naphthenes, aromatics
– Jet Fuel: long (> C9), straight chains, iso-alkanes, aromatics
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C=C Bonds Relevant to Conventional Fuels, Biofuels

– HO2 + O2 



Motivation: Study the Influence of C=C Position on 
Low-Temperature Autoignition Chemistry using Hexene

1-hexene

2-hexene
(Z)(E)

3-hexene
(Z)(E)



JSR Speciation
Battin-Leclerc et al.
J. Phys. Chem. A, 2014
1 atm, 1.0% (vol.) RH 

Differing Isomer-Specific Reactivities Observed in RCM, JSR

RCM Ignition Times (< 1000 K)
Vanhove et al.
Proc. Comb. Inst., 2005
8 atm, 2.3% (vol.) RH 

800 K – 650 K 650 K – 800 K 



Alkene Oxidation Requires Accounting for Additional 
Reaction Sequences Compared to Alkane Oxidation

RH + HO2 ⟶ QOOH* ⟶�oxirane + OH or RO2

⟶ saturated cyclic ethers + OH

R' + HO2 ⟶ RO2H ⟶ RO + OH 
(delayed chain-branching)

RH + OH ⟶ Waddington (carbonyl + OH)
⟶ OH-substituted cyclic ether + OH

R + O2 ⟶�QOOH ⟶ cyclic ether* + OH
*unsaturated chain + OH
*C=C bond in ring + OH



Alkene Oxidation Requires Accounting for Additional 
Reaction Sequences Compared to Alkane Oxidation

+ CH3    + OH



Experimental Details



Multi-pass Infrared-Absorption Experiment
HO2 line
6625.784 cm–1



Probing of Molecular Beams

Intermediates from Oxidation Reactions Probed using 
VUV Photoionization of Molecular Beams

Time-Dependent 
Chemical Kinetics 

High-Resolution 
Mass Spectra

Isomer-Resolved 
Species Identification



Conditions for Cl-Initiated Oxidation Experiments

Species Number Density (molecules/cm3) 

Hexene 1.9·1015

500 – 750 K
20 Torr

O2 4.1·1016

Cl (photolyzed Cl2) 3.4·1013

He 3.4·1017 

Multi-pass Infrared-Absorption (IR) Conditions

Species Number Density (molecules/cm3) 

Hexene 7.0·1013

550 K
8 Torr

O2 1.4·1016

Cl (photolyzed OxCl) 4.4·1012

He 4.9·1016 

Multiplexed Photoionization Mass Spectrometry (MPIMS) Conditions



OH Time History Results



OH Time Histories of 1-Hexene



OH Time Histories of 1-Hexene



OH Time Histories of 1-Hexene



OH Time Histories of 1-Hexene



OH Time Histories of 1-Hexene



OH Time Histories of 1-Hexene



OH Consumption Reactions by 1-Hexene – 
Rate Parameters from LLNL n-Alkane Model (2011)

Reaction A n Ea (kcal/mol)
c6h12-1 + oh<=>c5h11-1+ch2o 1.000e+11 0.00 -4.000e+03
c6h12-1 + oh<=>c6h111-3+h2o 2.764e+04 2.64 -1.919e+03
c6h12-1 + oh<=>c6h111-4+h2o 4.670e+07 1.61 -3.500e+01
c6h12-1 + oh<=>c6h111-5+h2o 4.670e+07 1.61 -3.500e+01
c6h12-1 + oh<=>c6h111-6+h2o 5.270e+09 0.97 1.586e+03
c6h12-1 + oh<=>c6h12oh-1        1.000e+12 0.00 -1.042e+03

dominant loss channel of OH:
OH + RH ⟶ products 



OH Time History from 1-Hexene Oxidation at 700 K, 
Calculated Pseudo-First-Order OH Consumption by RH

calculated OH depletion by RH
under pseudo-first-order conditions 



Integrated OH Formation from Oxidation of 1-Hexene 



Integrated OH Formation from Oxidation of 1-Hexene, 
(Z)-2-Hexene 



Integrated OH Formation from Oxidation of 1-Hexene, 
(Z)-2-Hexene, (E)-2-Hexene



Integrated OH Formation from Oxidation of 1-Hexene, 
(E)-2-Hexene, (Z)-2-Hexene, (Z)-3-Hexene, (E)-3-Hexene



HO2 Time History Results



HO2 Time Histories (1-Hexene)



HO2 Time Histories (1-Hexene)



HO2 Time Histories for 1-/2-/3-Hexene Conformers (750 K)



Summary of OH and HO2 Time Histories (20 Torr)

• Temperature dependence of OH formation in hexene isomers
– 1-hexene resembles alkane oxidation 
– 2-hexene exhibits plateauing trend
– 3-hexene yields limited OH, peak at 550 K
– Conformer-independent

• Temperature dependence of HO2 formation in hexene isomers
– HO2 yield for 2-/3-hexene below detection limit (ca. 1010 cm–3) below 600 

K
– Conformer-independent 

1-hexene 2-hexene

(Z)(E)

3-hexene

(Z)(E)



Photoionization Mass Spectrometry Results



Difference Mass Spectra from 1-Hexene Oxidation (550 K)

conjugate alkenes (dienes)

cyclic ethers

aldehydes
methyl



Hydrocarbon Radical Profiles in 1-Hexene Oxidation (550 K)



Methyl Radical Time Profiles for 1-/2-/3-Hexene (550 K) 
Exhibit Isomer Dependence



Methyl Radical Formation Pathways 

+ CH3

+ CH3

+ CH3

+ CH3

+ CH3



Concluding Remarks on Role of C=C Bond Position in Low
-Temperature Oxidation of Hexene Isomers

• C=C located towards the center of the molecule leads to
– Diminished OH yield
– Diminished HO2 yield

• Experimental results → no (E)/(Z) conformer dependence

• Photoionization mass spectrometry results → evidence of co-product 
pairs consistent with C–C b-scission of QOOH radicals



Concluding Remarks on Role of C=C Bond Position in Low
-Temperature Oxidation of Hexene Isomers

• Potential energy surface calculations for hexenyl + O2

– Effect of allylic stabilization on C–C bond scission in QOOH

• Master Equation calculations of select reaction rates

R + O2

ROO
QOOH

Products





Radical Distribution from RH + Cl → R + HCl using SAR:
1-Hexene



OH Time Profiles of Hexene Isomers/Conformers (550 K)



Photoionization Spectra from 1-Hexene Oxidation (550 K)



Photoionization Spectra from 1-Hexene Oxidation (550 K)

9.80 eV 8.15 eV

8.21 eV



Product Formation from the Waddington Mechanism in 
(Z)-2-hexene Oxidation (550 K)

+ O2 + OH 

+ OH 



Comparison of Cyclic Ether, Conjugate Alkene Time Histories 
to Products of C–C b-Scission QOOH and Waddington



Fuel-Depletion Percentages of 5% (MPIMS)



Rate Parameters of Other OH Depletion Reactions

** Rate in the high-pressure limit
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Select OH Formation Mechanisms (1-hexene)

+ O2

– O2

RO2

+ OH

+ OH

– OH

+ O2

– O2

+ OH



Hexene Isomers Permit Detailed Study on the Influence of 
C=C Position on Low-Temperature Autoignition Chemistry

1-hexene

2-hexene

3-hexene

(Z)-2-hexene

(Z)-3-hexene

(E)-2-hexene

(E)-3-hexene

+ O2

– O2

RO2



C=C Position Affects Distribution of Allylic, 1, 2 C–H 
Bonds

1-hexene

2-hexene

3-hexene

85.5 kcal/mol

83.9 kcal/mol

106.8 kcal/mol

100.5 kcal/mol

97.5 kcal/mol

(E)-2-hexene C–H bond dissociation energies

(Z)-2-hexene

(Z)-3-hexene

(E)-2-hexene

(E)-3-hexene



Alkene Oxidation Requires Additional Reaction Sequences 
Compared to Alkane Oxidation

R + O2 ⟶�QOOH ⟶ vinyloxy + C4H8O

+ HO2 ⟶

+ HO2 ⟶



Experimental Approach – Studying R + O2 Chemistry using 
Multiplexed Photoionization Mass Spectrometry (MPIMS)
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Multiplexed Photoionization Mass Spectrometer

+   O2   +   Cl2   +   He

Photolysis

+   Cl2   +   O2   +   He  

Initial System

Osborn et al., Rev. Sci. Inst. (2008)System of Interest (R + O2)
450 – 700 K
8 Torr











Literature on Hexene Oxidation/Autoignition

• 1-/2-hexene display two-stage ignition behavior, 3-hexene ⟶�
negligible

• Two comprehensive chemical kinetics models for combustion
– Mehl et al. (LLNL/POLIMI)
– Battin-Leclerc (EXGAS) 



HO2 Time Histories Corrected for HO2 + HO2 Self-Reaction



Upper Limit of HO2 Formation from Oxidation of 1-hexene, 
(Z)-2-hexene, (E)-2-hexene, (Z)-3-hexene, (E)-3-hexene



Multi-pass Infrared-Absorption Experiment

HO2 line
6625.784 cm–1



HO2 Time Histories for 1-/2-/3-Hexene Conformers (750 K)



HO2 Time Histories for 1-/2-/3-Hexene Conformers (750 K)



HO2 Time Histories for 1-/2-/3-Hexene Conformers (750 K)



Motivation: Study the Influence of C=C Position on 
Low-Temperature Autoignition Chemistry using Hexene



C=C Position Affects Distribution of Allylic, 1, 2 C–H 
Bonds, Alters Reaction Pathways, Introduces Resonance

85.5 kcal/mol

83.9 kcal/mol

106.8 kcal/mol

100.5 kcal/mol

97.5 kcal/mol

(E)-2-hexene C–H bond dissociation energies

+ O2

– O2

RO2



R + O2

Experimental and Computational Approach

Multi-pass Infrared-Absorption 
Detection of OH, HO2

ROO
QOOH

Products

ab initio CalculationsTime-Dependent 
Photoionization Mass Spectra


