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Case I: ISO Perspective
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Objectives:

@ Justify ES investments by
potential savings

Advantages:

@ One decision-maker has all the
system information

@ Modeling simplicity &
computational efficiency

@ Intuitive trade-off between
savings and investments
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Case I: Objective Function

Investment Cost

min > (CP - pi™ + C* - ™)
beB

E(Variable operating cost)

+rz: Z Zﬂ-e . Clg . ge,t,i(Pg]ax,quaX) (1)

ecEteT iel

E(Fixed operating cost)

+ Z Z Zﬂ'e . C,-f- ui (PR, sp'™),

ecE teT iel
where:
PR, s € R%+ —  Power and energy ratings of ES placed at bus b
8e,t,i € RO+ — Power output of generator i at hour t on day e
Ueti € {0, 1} — On/off status of generator i at hour t on day e
Te —  Weight of typical day e
C[[_']] — Cost parameters as applicable
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Case I: Constraints

Binary logic on conventional generators
Minimum up- and down-time constraints
Start-up and shut down trajectories
Dispatch constraints on conventional generators
Dispatch constraints on renewables
Network constraints (dc power flow model)
max max

Dispatch constraints on ES (constrained by pf'® and sp®* )

Nodal power balance constraints
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Case |: Pros and Cons

@ Pros:
e Solved within tens of minutes with a reasonable optimality, even for
large systems
e Can be decomposed and parallelized
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Case |: Pros and Cons

@ Pros:
e Solved within tens of minutes with a reasonable optimality, even for
large systems
e Can be decomposed and parallelized
e Cons:
o Locational marginal prices (A ¢ ) are by-products of the optimization

Injections from generators Injections from lines Injections from renewables
/_H /_/\_\
f
E Be,t,i - § fe,t,l + § fe,t,l + (We,t,b - Wse,t,b)
i€ly Ilo()=b Ilr(l)=b

—Che /RN + diserp - NS = dorp  (Ners),Ve€ E,t € T,beB.

oLy

{

Injections from ES Demand

o Thus, there is no explicit way to relate the investment cost and the
expected profit while optimizing investments

@ To protect investment decisions (pj'*, s)"®) against insufficient

profits, Ac +», must be factored into the optimization
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Case Il: ISO+ESO Perspective
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Case Il: ISO+ESO Perspective
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Arbitrage Relief
Perspective System Operator (SO)
P Support Reduce
Objective | | p etiability Cost
Planning Siting and Sizing of Storage
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Objective:

@ Protect ES investments against
insufficient profits

Advantages:

Energy Storage Owner
(ESO)

Recover
Investments

e
e

Disadvantages:

@ More complex modeling

o Computationally demanding

@ Assumes non-strategic

@ Balances ISO savings & ESO profits behavior of ES
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Case Il: Overview

Upper-level problem
ES investment problem

max

max LL :
Pb 5 Sb OCe~, chet b, dise t by Ae,t,b

Lower-level problems
Operational decisions for typical days

e Naturally fits the multi-level programming (Mathematical
Programming with Equilibrium Constraints - MPEC) framework

@ )¢ b are decision variables, i.e. can be used for explicitly relating the
expected operating profit and investment cost.
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Case Il: Upper-Level Problem

Investment cost (/C) E(Operating Cost (OC), as in Case |)
minz (CP-pp™ + C° - s5p™) + Z <7Te' OCeLL> ; (2)
beB ecE P

Optimized in the lower level (LL)

s.t.:
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Case Il: Upper-Level Problem

Investment cost (/C) E(Operating Cost (OC), as in Case |)
minz (CP-pp™ + C° - s5p™) + Z (7Te' OCeLL> ; (2)
beB ecE

/

Optimized in the lower level (LL)

s.t.:
E(Profit of ESO)
-\ Rate-of-return

Do DD Aeo (disen R = cherp/NP) = O IC

ecE beBteT

Ic< ocm (4)
——

Investment Budget

Ae,t.b —  Energy prices (LMP)
X, /C™® — ESQ's investment parameters
Neh Ndis  — Charging/discharging efficiency
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Case |I: Lower-Level Problem

Investment cost (/C) E(Operating Cost (OC), as in Case |)
min Z (CP-pp™ + C° - sp™) + Z (7Te : OCeLL) : (5)
beB ecE
st Investment constraints (6)
Minimum up- and down-time constraints (7)
Start-up and shut down trajectories (8)
{ min Z -0Cth, (9)

ecE
Dispatch of generators, renewables, storage + network constraints (10)

Nodal power balance : ()\e,nb)-} (11)

(University of Washington) June 29, 2016 11 /23



Case Il: Solution Technique

@ Reformulation into a single-level equivalent:
o Step 1: Obtain the dual problem of the LL problems
e Step 2: Invoke the strong duality theorem for the primal and dual LL
problems
e Step 3: Introduce the UL constraints
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Case Il: Solution Technique

@ Reformulation into a single-level equivalent:
o Step 1: Obtain the dual problem of the LL problems
e Step 2: Invoke the strong duality theorem for the primal and dual LL
problems
e Step 3: Introduce the UL constraints

@ Steps 1-3 lead to the single-level equivalent:

Investment cost (/C) E(Operating Cost (OC), as in Case I)
minZ(Cp-pg‘aX+CS-s{,"ax)+ Z (7re- OCL_‘L> ,
beB ecE

subject to:

UL (investment) constraints, Eq. (6)-(8) + nonlinear!!!
o Primal LL (operational) constraints, Eq. (10)-(11)

o Dual LL (operational) constraints

o Conditions of the strong duality theorem
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Case II: Linearization of the Single-Level Equivalent

@ The profit constraint is non-linear due to the product of continuous

primal and dual LL variables:

Do 30D Aer (diseie R = chep/RP) > x-IC. (12)

ecE beB teT

v~

Pe
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Case II: Linearization of the Single-Level Equivalent

@ The profit constraint is non-linear due to the product of continuous
primal and dual LL variables:

Do 30D Aer (diseie R = chep/RP) > x-IC. (12)

ecE beB teT

v~

Pe

e Eq. (12) can be exactly linearized using KKT-conditions and
complimentary slackness properties
@ This linearization suggests the following analytic conclusions:
o Profit (P.) is proportional to the investment decisions (pJ'®* and s{"®)
and to the dual variables of ES dispatch constraints of the LL problem
o In a perfectly competitive market, P, is driven by the value provided by

ES to the system.
e This value can be itemized for the power and energy capacity of ES
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Case Study: System Description

ISO New England test system:
@ Market-based view of the system
8 market zones, 13 transmission corridors, 76 thermal generators
2030 renewable portfolio & load expectations
ARPA-e projections on ES capital costs and characteristics:
e 0.81 — ES round-trip efficiency (rather conservative)
o 10 years — ES lifetime (realistic)
o 5% — Annual interest rate (rather optimistic)
o Three capital cost scenarios: High ($75/kWh and $1300/kW), Medium
($50/kWh and $1000/kW), Low ($20/kWh and $500,/kW)
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Impact of the Minimum Profit Constraint

@ Parameter x > 1 ensures the full investment recovery
e x =0 — Eq. (31) is inactive — Case |
e x =1— Eq. (31) is active — Case

Z Z Z >\e,t,b ' (dise,t,b - Che,t,b) > X IC (13)

ecE teT beB
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Impact of the Minimum Profit Constraint

@ Parameter x > 1 ensures the full investment recovery
e x =0 — Eq. (31) is inactive — Case |
e x =1— Eq. (31) is active — Case

Z Z Z >\e,t,b ' (dise,t,b - Che,t,b) > X IC (13)

ecE teT beB
2500
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2000 [_1Zone2
[_1Zone3
[1Zone 4
1500 [CZone5
MWh I Zone 6
[ Zone 7
1
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Cx=0
500  m— O
Rhode Island
ww 7o W 6 W ]

0
@ The profit constraints drive both the siting and sizing decisions
e Reduction in the cumulative rating
e More diversity in locations
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Impact of Capital Cost Scenarios

@ Three capital costs scenarios (CP and C®):

D et (dise,t — cherp) > x - IC, (14)
ecE teT beB
IC = CP. p"™ 4 C°. s (15)
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Impact of Capital Cost Scenarios

@ Three capital costs scenarios (CP and C®):

g )\e,t,b : (dise,t,b - Che,t,b) >x-1C, (14)
ecE teT beB
IC = CP. pa 4 CS. sma (15)
2000

: [ 1Zone1

1500 1| C—JZone 2

[JZone3

MVX’EOO || ] Zone 4

[ Zone 5

[ Zone 6

500 I Zone 7

I Zone 8

0 Low High
Medium

@ High capital cost scenario:
@ No need for siting optimization
@ Similar decisions to the centralized planning
@ Medium & Low capital cost scenarios:
@ Lower capital cost — variety in sizing and siting
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Impact of the ES Market Power

@ Market power mitigation by capping LMPs:

DD Aewn - (disern — cherp) > x - IC, (16)

ecE teT beB
(L= AN AZL > Ao > (1+AN) AT, (17)
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Impact of the ES Market Power

@ Market power mitigation by capping LMPs:

DD Aewn - (disern — cherp) > x - IC, (16)

ecE teT beB
(L= AN AZL > Ao > (1+AN) AT, (17)

x10*

x10*
SIS
0 0 0.1 0.2
AN

o] ° & ™

L Jx=t

@ Exercising market power increases the ESO profit (P) with the profit-constrained
investment (y = 1)

@ Exercising market power reduces the ESO net profit (A = P — IC) with the

profit-unconstrained investment (x = 0)
@ Primarily due to the limited look-ahead capabilities.

(University of Washington) June 29, 2016 17 / 23



Impact of Coordinated Operations

@ Previously, the ESO profitability was enforced in a coordinated (system-wide)

fashion, i.e.:
DD Nt - (diseen — cheyes) > x - IC. (18)

eCE tcT beB
@ However, in practice ES can be operated independently, i.e.:

D> Xets - (diseren — cheyes) > x - ICo, Vb€ B. (19)

ecE teT
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Impact of Coordinated Operations

@ Previously, the ESO profitability was enforced in a coordinated (system-wide)

fashion, i.e.:
DD Nt - (diseen — cheyes) > x - IC. (18)

eCE tcT beB
@ However, in practice ES can be operated independently, i.e.:

E E Ae,t,b . (dlse,t,b — Che,t,b) > X /Cb, Vb € B. (19)
ecE teT
[_JZone 1
A) [—JZone 2
[_JZone 3
[CJZone 4
[ Zone 5
[ Zone 6
[ Zone 8
=0
C_Jar=0.1
Indepen ord. Car-02

d.
Operating policy

x10°
B) 0 g
B Fﬂ ql° [ (
Independ. Coord. 0 Independ. Coord.
Operating policy Operating policy
@ Coordinated operations affects siting and sizing decisions
@ Reduction in the cumulative rating, but higher profits
@ Less diversity in locations
(University of Washington)
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Case lll: How Can Transmission Expansion Be Modeled?

@ One more level is needed: Subproblem

Chetb: disetb

‘ ML Problem
Master _ ,| ,,,,,,,,, ! (Transmission ex-
! pansion problem)
|
UL Problem l
Nl
storage problem)

LL Problems
(Market-clearing
problems)

I

I

|

I

|

I

I

I ! |
I ! |
| ! |
I ! I
I ! I
| | ~ |
| (Merchant | Chetb, diSetb, Zeti wi \
I I

| ! | I
I I | |
| ! | |
I ! | |
1 ! | |
| I

| |

I

|

I

|

|

@ CCG decomposition is used to solve the tri-level model
e Surprisingly computationally tractable!
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Case IlI: Impact of Transmission Expansion on Storage

Siting and Sizing with Different Storage Capital Costs

| [ ]Added line capacity, GW [ Added storage capacity, GW|

Low 0.74 GWh Low 0.44 GWh
Med 0.30 GWh Med 0.25 GWh
High I: High
5 25 0 0.25 5 2.5 0 0.25
GW GW
(@) (b)

Figure: Line candidates include (a) lines directly connected to storage buses only; (b) all lines.

@ The trade-off between storage and transmission decisions is sensitive
to the capital cost scenario

@ No feasible storage installations for the high capital cost scenario
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Is There Any Value in Cases Il and 1117

@ Siting decisions are greatly affected by the perspective considered
@ Only three locations satisfy all three cases
@ Cases Il and Il have 7 locations in common

The number of ES locations in Case |, Case Il, and Case |lI.
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(Data-Driven) Lessons Learned

@ The proposed approach facilitates the integration of merchant ES into
power systems

Perspectives matter:

Different siting and sizing decisions

Different investment costs and profits

Different utilization

Annual welfare losses - 2.3% if Case | is used instead of Case |l
Annual welfare losses - 2.5% if Case | is used instead of Case Ill

Siting and sizing decisions are driven essentially by the capital cost

Profit constraint is important for cases with:
o Large investment budgets
o Low investment costs
o Ability to exercise market power

Merchant ES can and will extract additional profits by influencing
LMPs, which comes at the expense of a larger system-wide operating
cost
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