

Profitability of Merchant Investments in Battery Energy Storage Systems: Methods and Case Studies

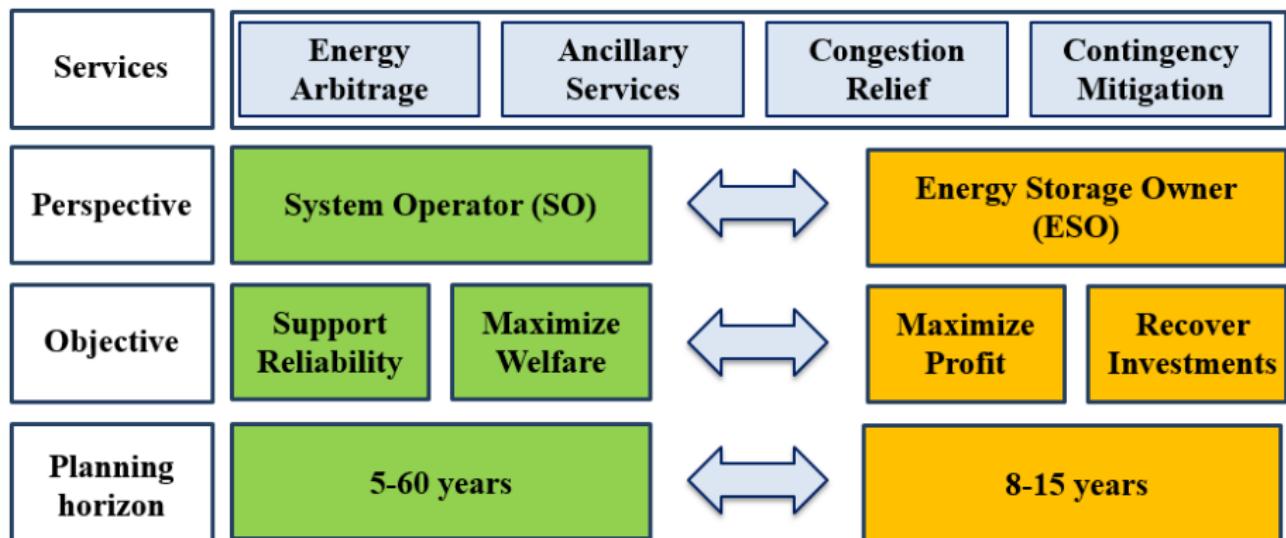
Yury Dvorkin^{1,2} Ricardo Fernandez-Blanco² Daniel Kirschen²
Hrvoje Pandzic³ Jean-Paul Watson⁴ Cesar Silva-Monroy⁴

¹New York University ²University of Washington

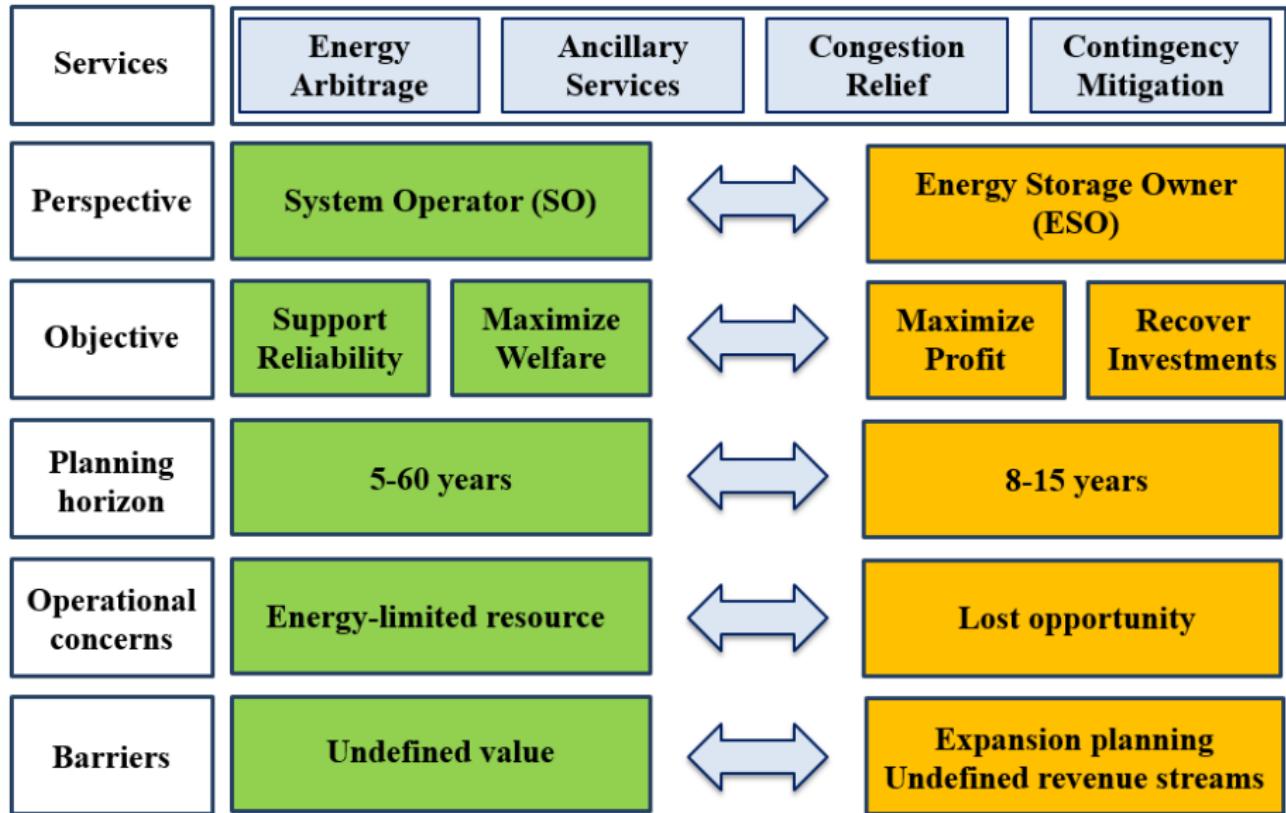
³University of Zagreb ⁴Sandia National Laboratories

June 29, 2016

Two Perspectives on Storage Investments



Two Perspectives on Storage Investments



Case I: ISO Perspective

Services	Energy Arbitrage	Congestion Relief
Perspective	System Operator (SO)	
Objective	Support Reliability	Reduce Cost
Planning decisions	Siting and Sizing of Storage	
Operations	Detailed day-to-day system-wide model	

Objectives:

- Justify ES investments by potential savings

Advantages:

- One decision-maker has all the system information
- Modeling simplicity & computational efficiency
- Intuitive trade-off between savings and investments

Case I: Objective Function

$$\begin{aligned} & \min \underbrace{\sum_{b \in B} (C^p \cdot p_b^{\max} + C^s \cdot s_b^{\max})}_{\text{Investment Cost}} \\ & + \underbrace{\sum_{e \in E} \sum_{t \in T} \sum_{i \in I} \pi_e \cdot C_i^g \cdot g_{e,t,i}(p_b^{\max}, s_b^{\max})}_{\mathbb{E}(\text{Variable operating cost})} \\ & + \underbrace{\sum_{e \in E} \sum_{t \in T} \sum_{i \in I} \pi_e \cdot C_i^f \cdot u_{i,t}(p_b^{\max}, s_b^{\max})}_{\mathbb{E}(\text{Fixed operating cost})}, \end{aligned} \quad (1)$$

where:

$$p_b^{\max}, s_b^{\max} \in \mathbb{R}^{0+}$$

$$g_{e,t,i} \in \mathbb{R}^{0+}$$

$$u_{e,t,i} \in \{0, 1\}$$

$$\pi_e$$

$$C_{[\cdot]}^{[\cdot]}$$

- Power and energy ratings of ES placed at bus b
- Power output of generator i at hour t on day e
- On/off status of generator i at hour t on day e
- Weight of typical day e
- Cost parameters as applicable

Case I: Constraints

- Binary logic on conventional generators
- Minimum up- and down-time constraints
- Start-up and shut down trajectories
- Dispatch constraints on conventional generators
- Dispatch constraints on renewables
- Network constraints (dc power flow model)
- Dispatch constraints on ES (constrained by p_b^{\max} and s_b^{\max})
- Nodal power balance constraints

Case I: Pros and Cons

- Pros:

- Solved within tens of minutes with a reasonable optimality, even for large systems
- Can be decomposed and parallelized

Case I: Pros and Cons

- Pros:

- Solved within tens of minutes with a reasonable optimality, even for large systems
- Can be decomposed and parallelized

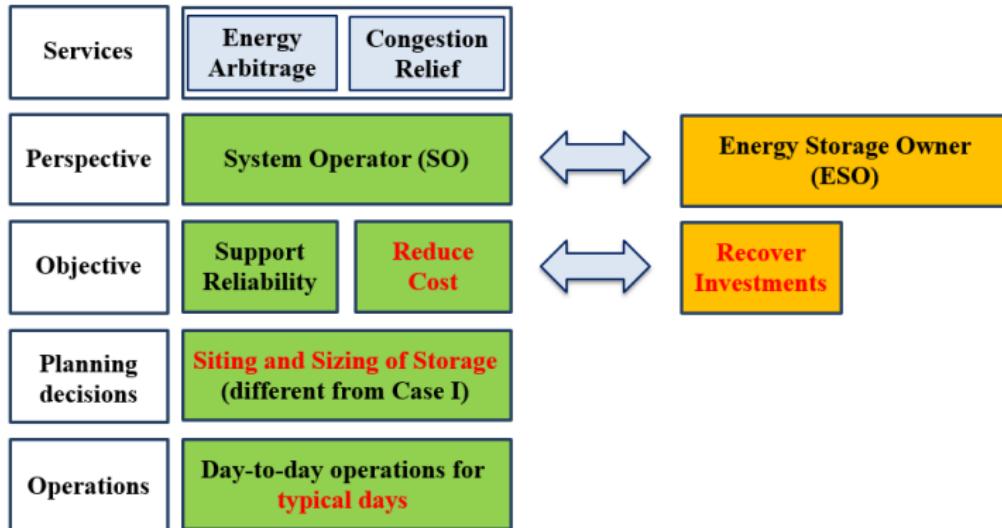
- Cons:

- Locational marginal prices ($\lambda_{e,t,b}$) are by-products of the optimization

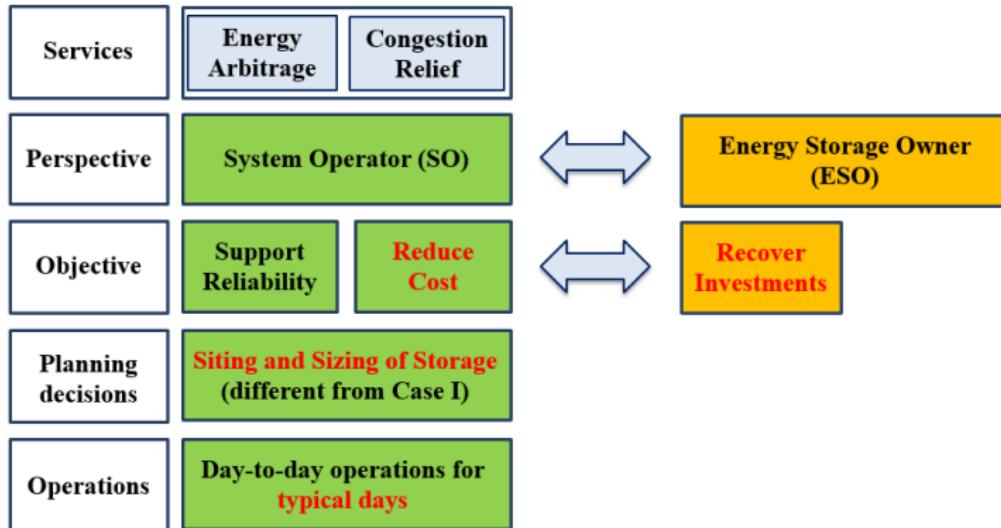
$$\underbrace{\sum_{i \in I_b} g_{e,t,i}}_{\text{Injections from generators}} - \underbrace{\sum_{I | o(I)=b} f_{e,t,I} + \sum_{I | r(I)=b} f_{e,t,I}}_{\text{Injections from lines}} + \underbrace{(w_{e,t,b}^f - ws_{e,t,b})}_{\text{Injections from renewables}} \\ - \underbrace{ch_{e,t,b}/\mathbb{N}^{\text{ch}} + dis_{e,t,b} \cdot \mathbb{N}^{\text{dis}}}_{\text{Injections from ES}} = \underbrace{d_{e,t,b}}_{\text{Demand}} : (\lambda_{e,t,b}), \forall e \in E, t \in T, b \in B.$$

- Thus, there is no explicit way to relate the investment cost and the expected profit while optimizing investments
- To protect investment decisions (p_b^{\max}, s_b^{\max}) against insufficient profits, $\lambda_{e,t,b}$ must be factored into the optimization

Case II: ISO+ESO Perspective



Case II: ISO+ESO Perspective



Objective:

- Protect ES investments against insufficient profits

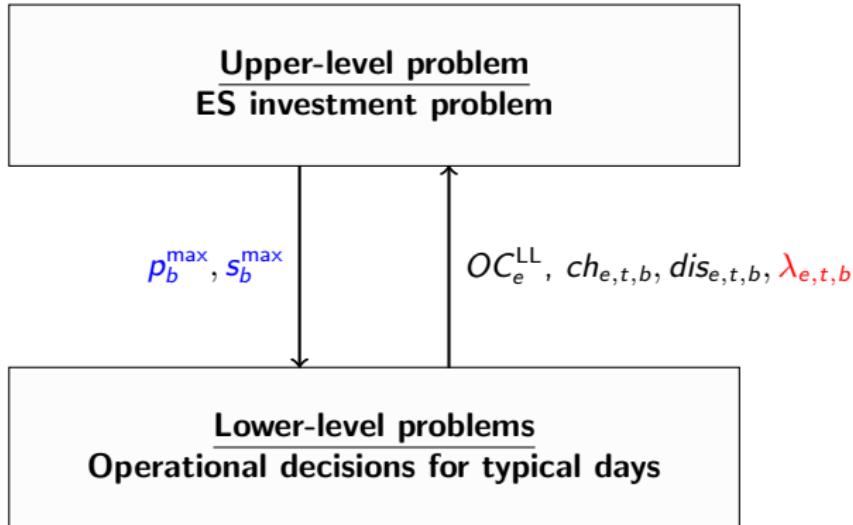
Advantages:

- Balances ISO savings & ESO profits

Disadvantages:

- More complex modeling
- Computationally demanding
- Assumes non-strategic behavior of ES

Case II: Overview



- Naturally fits the **multi-level programming** (Mathematical Programming with Equilibrium Constraints - MPEC) framework
- $\lambda_{e,t,b}$ are decision variables, i.e. can be used for explicitly relating the expected operating profit and investment cost.

Case II: Upper-Level Problem

$$\min \underbrace{\sum_{b \in B} (C^p \cdot p_b^{\max} + C^s \cdot s_b^{\max})}_{\text{Investment cost (IC)}} + \underbrace{\sum_{e \in E} (\pi_e \cdot OC_e^{\text{LL}})}_{\mathbb{E}(\text{Operating Cost (OC), as in Case I})} \quad (2)$$

Optimized in the lower level (LL)

s.t.:

Case II: Upper-Level Problem

$$\begin{aligned}
 & \min \underbrace{\sum_{b \in B} (C^p \cdot p_b^{\max} + C^s \cdot s_b^{\max})}_{\text{Investment cost (IC)}} + \underbrace{\sum_{e \in E} (\pi_e \cdot OC_e^{\text{LL}})}_{\mathbb{E}(\text{Operating Cost (OC), as in Case I})} \\
 & \quad \text{Optimized in the lower level (LL)} \tag{2}
 \end{aligned}$$

s.t.:

$$\underbrace{\sum_{e \in E} \sum_{b \in B} \sum_{t \in T} \lambda_{e,t,b} \cdot (dis_{e,t,b} \cdot \mathbb{N}^{\text{dis}} - ch_{e,t,b} / \mathbb{N}^{\text{ch}})}_{\mathbb{E}(\text{Profit of ESO})} \geq \underbrace{\chi}_{\text{Rate-of-return}} \cdot IC, \tag{3}$$

$$IC \leq \underbrace{IC^{\max}}_{\text{Investment Budget}}, \tag{4}$$

- $\lambda_{e,t,b}$ – Energy prices (LMP)
- χ, IC^{\max} – ESO's investment parameters
- $\mathbb{N}^{\text{ch}}, \mathbb{N}^{\text{dis}}$ – Charging/discharging efficiency

Case II: Lower-Level Problem

$$\min \sum_{b \in B} \underbrace{(C^p \cdot p_b^{\max} + C^s \cdot s_b^{\max})}_{\text{Investment cost (IC)}} + \underbrace{\sum_{e \in E} (\pi_e \cdot OC_e^{\text{LL}})}_{\mathbb{E}(\text{Operating Cost (OC), as in Case I})}, \quad (5)$$

s.t.:

$$\text{Investment constraints} \quad (6)$$

$$\text{Minimum up- and down-time constraints} \quad (7)$$

$$\text{Start-up and shut down trajectories} \quad (8)$$

$$\left\{ \min \sum_{e \in E} (\pi_e \cdot OC_e^{\text{LL}}), \quad (9) \right.$$

$$\text{Dispatch of generators, renewables, storage + network constraints} \quad (10)$$

$$\left. \text{Nodal power balance : } (\lambda_{e,t,b}). \right\} \quad (11)$$

Case II: Solution Technique

- Reformulation into a single-level equivalent:
 - **Step 1:** Obtain the dual problem of the LL problems
 - **Step 2:** Invoke the strong duality theorem for the primal and dual LL problems
 - **Step 3:** Introduce the UL constraints

Case II: Solution Technique

- Reformulation into a single-level equivalent:
 - Step 1:** Obtain the dual problem of the LL problems
 - Step 2:** Invoke the strong duality theorem for the primal and dual LL problems
 - Step 3:** Introduce the UL constraints
- Steps 1-3 lead to the single-level equivalent:

$$\min \underbrace{\sum_{b \in B} (C^p \cdot p_b^{\max} + C^s \cdot s_b^{\max})}_{\text{Investment cost (IC)}} + \underbrace{\sum_{e \in E} (\pi_e \cdot OC_e^{\text{LL}})}_{\mathbb{E}(\text{Operating Cost (OC), as in Case I})},$$

subject to:

- UL (investment) constraints, Eq. (6)-(8) \leftarrow nonlinear!!!
- Primal LL (operational) constraints, Eq. (10)-(11)
- Dual LL (operational) constraints
- Conditions of the strong duality theorem

Case II: Linearization of the Single-Level Equivalent

- The profit constraint is non-linear due to the product of continuous primal and dual LL variables:

$$\sum_{e \in E} \pi_e \cdot \underbrace{\sum_{b \in B} \sum_{t \in T} \lambda_{e,t,b} \cdot \left(\text{dis}_{e,t,b} \cdot \mathbb{N}^{\text{dis}} - \text{ch}_{e,t,b} / \mathbb{N}^{\text{ch}} \right)}_{P_e} \geq \chi \cdot IC. \quad (12)$$

Case II: Linearization of the Single-Level Equivalent

- The profit constraint is non-linear due to the product of continuous primal and dual LL variables:

$$\sum_{e \in E} \pi_e \cdot \underbrace{\sum_{b \in B} \sum_{t \in T} \lambda_{e,t,b} \cdot \left(\text{dis}_{e,t,b} \cdot \aleph^{\text{dis}} - \text{ch}_{e,t,b} / \aleph^{\text{ch}} \right)}_{P_e} \geq \chi \cdot IC. \quad (12)$$

- Eq. (12) can be **exactly** linearized using KKT-conditions and complimentary slackness properties
- This linearization suggests the following analytic conclusions:
 - Profit (P_e) is proportional to the investment decisions (p_b^{\max} and s_b^{\max}) and to the dual variables of ES dispatch constraints of the LL problem
 - In a perfectly competitive market, P_e is driven by the value provided by ES to the system.
 - This value can be itemized for the power and energy capacity of ES

Case Study: System Description

ISO New England test system:

- Market-based view of the system
- 8 market zones, 13 transmission corridors, 76 thermal generators
- 2030 renewable portfolio & load expectations
- ARPA-e projections on ES capital costs and characteristics:
 - 0.81 – ES round-trip efficiency (rather conservative)
 - 10 years – ES lifetime (realistic)
 - 5% – Annual interest rate (rather optimistic)
 - Three capital cost scenarios: High (\$75/kWh and \$1300/kW), Medium (\$50/kWh and \$1000/kW), Low (\$20/kWh and \$500/kW)

Impact of the Minimum Profit Constraint

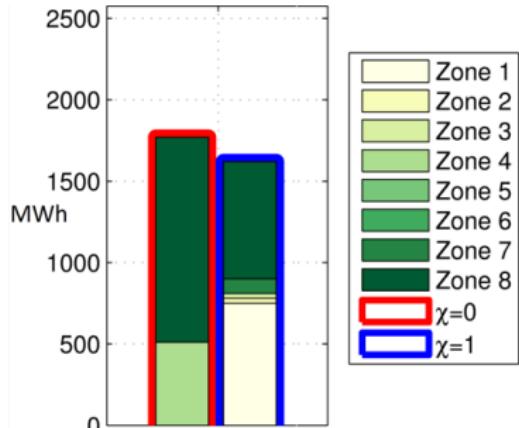
- Parameter $\chi \geq 1$ ensures the full investment recovery
 - $\chi = 0 \rightarrow$ Eq. (31) is inactive \rightarrow Case I
 - $\chi = 1 \rightarrow$ Eq. (31) is active \rightarrow Case II

$$\sum_{e \in E} \sum_{t \in T} \sum_{b \in B} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC \quad (13)$$

Impact of the Minimum Profit Constraint

- Parameter $\chi \geq 1$ ensures the full investment recovery
 - $\chi = 0 \rightarrow$ Eq. (31) is inactive \rightarrow Case I
 - $\chi = 1 \rightarrow$ Eq. (31) is active \rightarrow Case II

$$\sum_{e \in E} \sum_{t \in T} \sum_{b \in B} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC \quad (13)$$



- The profit constraints drive both the siting and sizing decisions
 - Reduction in the cumulative rating
 - More diversity in locations

Impact of Capital Cost Scenarios

- Three capital costs scenarios (C^p and C^s):

$$\sum_{e \in E} \sum_{t \in T} \sum_{b \in B} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC, \quad (14)$$

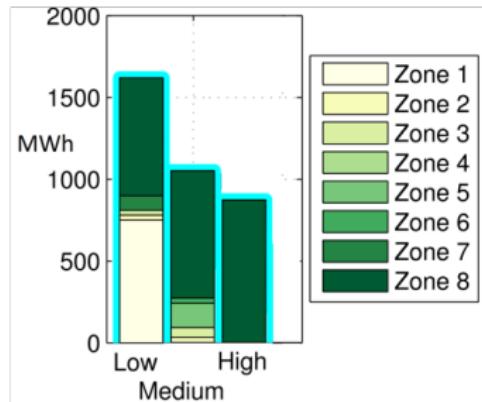
$$IC = C^p \cdot p_b^{\max} + C^s \cdot s_b^{\max} \quad (15)$$

Impact of Capital Cost Scenarios

- Three capital costs scenarios (C^P and C^S):

$$\sum_{e \in E} \sum_{t \in T} \sum_{b \in B} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC, \quad (14)$$

$$IC = C^P \cdot p_b^{\max} + C^S \cdot s_b^{\max} \quad (15)$$



- High capital cost scenario:
 - No need for siting optimization
 - Similar decisions to the centralized planning
- Medium & Low capital cost scenarios:
 - Lower capital cost → variety in sizing and siting

Impact of the ES Market Power

- Market power mitigation by capping LMPs:

$$\sum_{e \in E} \sum_{t \in T} \sum_{b \in B} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC, \quad (16)$$

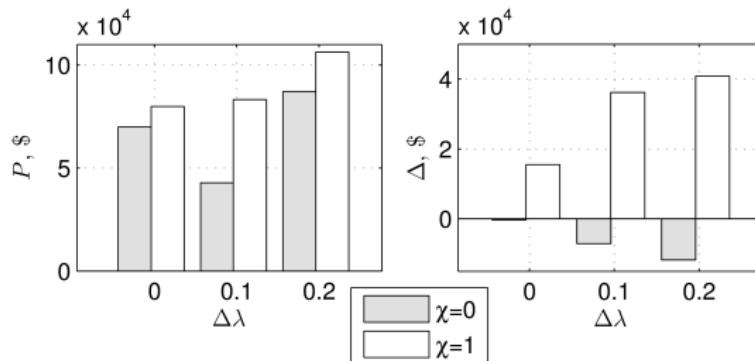
$$(1 - \Delta\lambda) \cdot \lambda_{e,t,b}^{\text{ref}} \geq \lambda_{e,t,b} \geq (1 + \Delta\lambda) \cdot \lambda_{e,t,b}^{\text{ref}} \quad (17)$$

Impact of the ES Market Power

- Market power mitigation by capping LMPs:

$$\sum_{e \in E} \sum_{t \in T} \sum_{b \in B} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC, \quad (16)$$

$$(1 - \Delta\lambda) \cdot \lambda_{e,t,b}^{\text{ref}} \geq \lambda_{e,t,b} \geq (1 + \Delta\lambda) \cdot \lambda_{e,t,b}^{\text{ref}} \quad (17)$$



- Exercising market power **increases** the ESO profit (P) with the profit-constrained investment ($\chi = 1$)
- Exercising market power **reduces** the ESO net profit ($\Delta = P - IC$) with the profit-**unconstrained** investment ($\chi = 0$)
 - Primarily due to the limited look-ahead capabilities.

Impact of Coordinated Operations

- Previously, the ESO profitability was enforced in a coordinated (system-wide) fashion, i.e.:

$$\sum_{e \in E} \sum_{t \in T} \sum_{b \in B} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC. \quad (18)$$

- However, in practice ES can be operated independently, i.e.:

$$\sum_{e \in E} \sum_{t \in T} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC_b, \quad \forall b \in B. \quad (19)$$

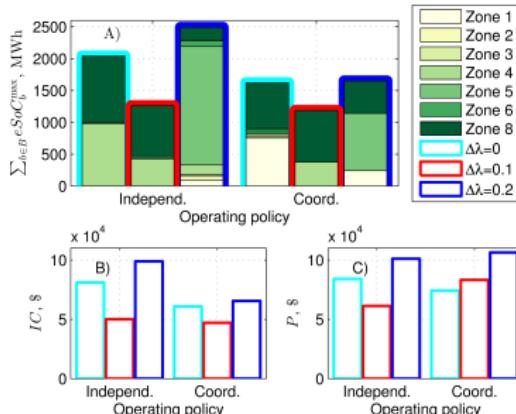
Impact of Coordinated Operations

- Previously, the ESO profitability was enforced in a coordinated (system-wide) fashion, i.e.:

$$\sum_{e \in E} \sum_{t \in T} \sum_{b \in B} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC. \quad (18)$$

- However, in practice ES can be operated independently, i.e.:

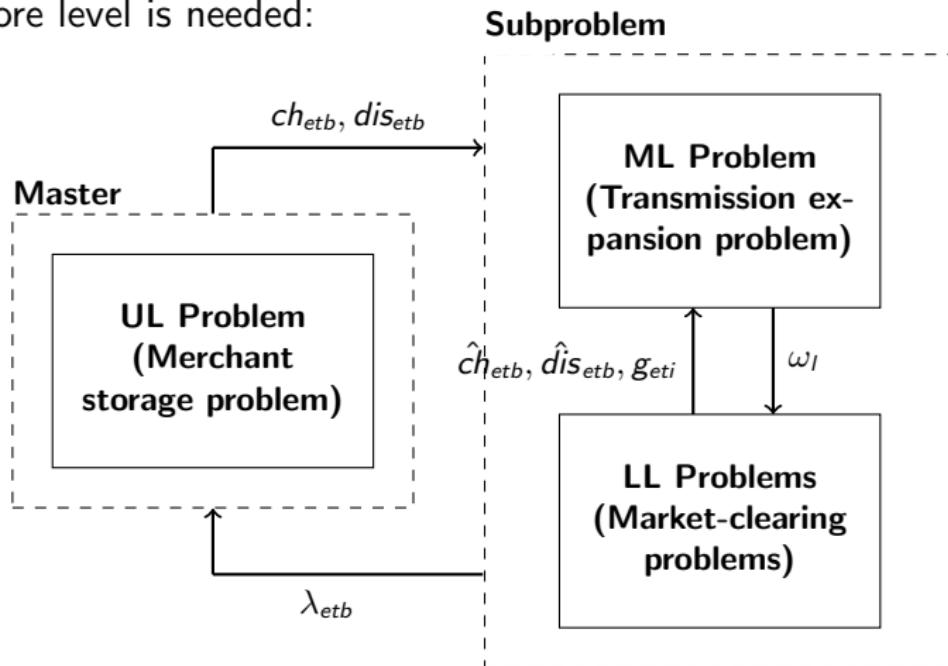
$$\sum_{e \in E} \sum_{t \in T} \lambda_{e,t,b} \cdot (dis_{e,t,b} - ch_{e,t,b}) \geq \chi \cdot IC_b, \quad \forall b \in B. \quad (19)$$



- Coordinated operations affects siting and sizing decisions
 - Reduction in the cumulative rating, but higher profits
 - Less diversity in locations

Case III: How Can Transmission Expansion Be Modeled?

- One more level is needed:



- CCG decomposition is used to solve the tri-level model
 - Surprisingly computationally tractable!

Case III: Impact of Transmission Expansion on Storage Siting and Sizing with Different Storage Capital Costs

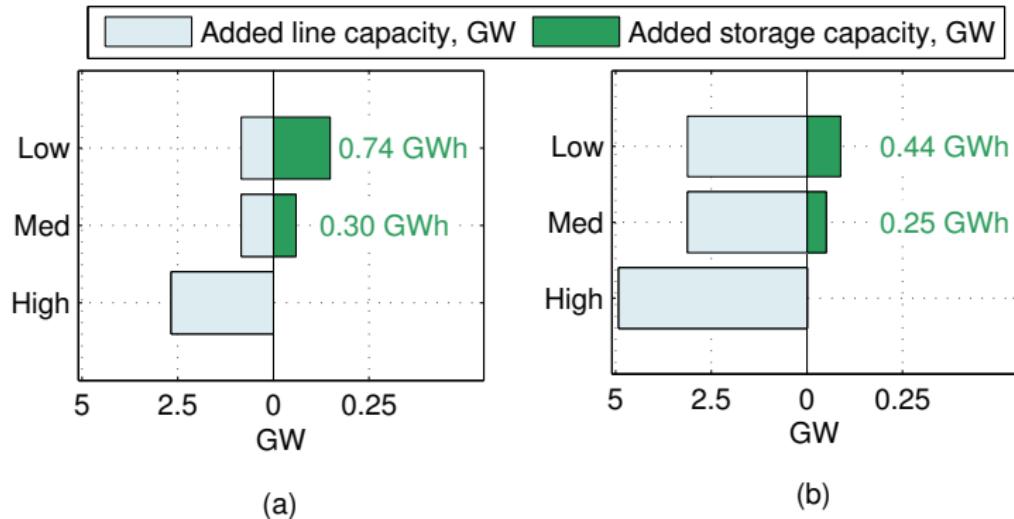
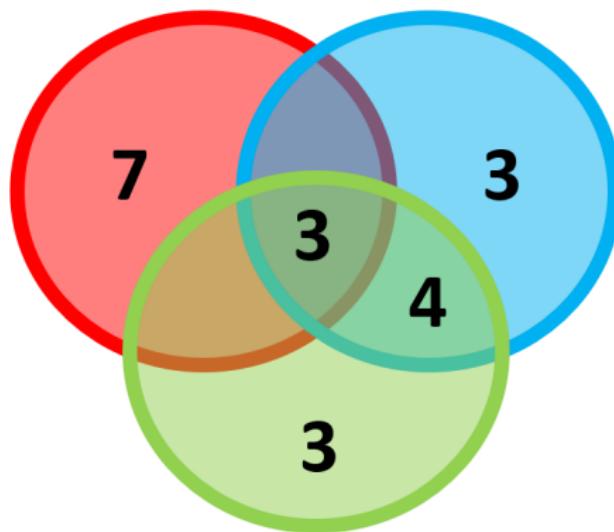


Figure: Line candidates include (a) lines directly connected to storage buses only; (b) all lines.

- The trade-off between storage and transmission decisions is sensitive to the capital cost scenario
- No feasible storage installations for the high capital cost scenario

Is There Any Value in Cases II and III?

- Siting decisions are greatly affected by the perspective considered
- Only three locations satisfy all three cases
- Cases II and III have 7 locations in common



The number of ES locations in **Case I**, **Case II**, and **Case III**.

(Data-Driven) Lessons Learned

- The proposed approach facilitates the integration of merchant ES into power systems
- **Perspectives matter:**
 - Different siting and sizing decisions
 - Different investment costs and profits
 - Different utilization
 - Annual welfare losses - 2.3% if Case I is used instead of Case II
 - Annual welfare losses - 2.5% if Case I is used instead of Case III
- Siting and sizing decisions are driven essentially by the capital cost
- Profit constraint is important for cases with:
 - Large investment budgets
 - Low investment costs
 - Ability to exercise market power
- Merchant ES can and will extract additional profits by influencing LMPs, which comes at the expense of a larger system-wide operating cost

Thank you!

References:

- Y. Dvorkin, R. Fernandez-Blanco, D. S. Kirschen, H. Pandzic, J. P. Watson, and C. A. Silva-Monroy, "Ensuring Profitability of Energy Storage," *IEEE Trans. Pwr. Syst.*, 2016. [\[pdf\]](#)
- Y. Dvorkin, R. Fernandez-Blanco, D. S. Kirschen, H. Pandzic, Y. Wang, B. Xu, J. P. Watson, and C. A. Silva-Monroy, "Co-planning of Investments in Transmission and Merchant Energy Storage," under review, 2016. (available upon request)