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Case I: ISO Perspective

Objectives:

Justify ES investments by
potential savings

Advantages:

One decision-maker has all the
system information

Modeling simplicity &
computational efficiency

Intuitive trade-off between
savings and investments

(University of Washington) June 29, 2016 4 / 23



Case I: Objective Function

min

Investment Cost︷ ︸︸ ︷∑
b∈B

(
Cp · pmax

b + C s · smax
b

)

+

E(Variable operating cost)︷ ︸︸ ︷∑
e∈E

∑
t∈T

∑
i∈I

πe · C g
i · ge,t,i (p

max
b , smax

b ) (1)

+

E(Fixed operating cost)︷ ︸︸ ︷∑
e∈E

∑
t∈T

∑
i∈I

πe · C f
i · ui ,t(pmax

b , smax
b ),

where:
pmax
b , smax

b ∈ R0+ – Power and energy ratings of ES placed at bus b
ge,t,i ∈ R0+ – Power output of generator i at hour t on day e
ue,t,i ∈

{
0, 1
}

– On/off status of generator i at hour t on day e
πe – Weight of typical day e

C
[·]
[·] – Cost parameters as applicable
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Case I: Constraints

Binary logic on conventional generators

Minimum up- and down-time constraints

Start-up and shut down trajectories

Dispatch constraints on conventional generators

Dispatch constraints on renewables

Network constraints (dc power flow model)

Dispatch constraints on ES (constrained by pmax
b and smax

b )

Nodal power balance constraints
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Case I: Pros and Cons

Pros:
Solved within tens of minutes with a reasonable optimality, even for
large systems
Can be decomposed and parallelized

Cons:
Locational marginal prices (λe,t,b) are by-products of the optimization

Injections from generators︷ ︸︸ ︷∑
i∈Ib

ge,t,i −

Injections from lines︷ ︸︸ ︷∑
l|o(l)=b

fe,t,l +
∑

l|r(l)=b

fe,t,l +

Injections from renewables︷ ︸︸ ︷(
w f
e,t,b − wse,t,b

)
−che,t,b/ℵch + dise,t,b · ℵdis︸ ︷︷ ︸

Injections from ES

= de,t,b︸ ︷︷ ︸
Demand

: (λe,t,b),∀e ∈ E , t ∈ T , b ∈ B.

Thus, there is no explicit way to relate the investment cost and the
expected profit while optimizing investments

To protect investment decisions (pmax
b , smax

b ) against insufficient
profits, λe,t,b must be factored into the optimization
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Case II: ISO+ESO Perspective

Objective:

Protect ES investments against
insufficient profits

Advantages:

Balances ISO savings & ESO profits

Economically sustainable decisions

Disadvantages:

More complex modeling

Computationally demanding

Assumes non-strategic
behavior of ES
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Case II: Overview

Lower-level problems
Operational decisions for typical days

Upper-level problem
ES investment problem

OC LL
e , che,t,b, dise,t,b, λe,t,bpmax

b , smax
b

Naturally fits the multi-level programming (Mathematical
Programming with Equilibrium Constraints - MPEC) framework

λe,t,b are decision variables, i.e. can be used for explicitly relating the
expected operating profit and investment cost.
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Case II: Upper-Level Problem

min

Investment cost (IC)︷ ︸︸ ︷∑
b∈B

(
Cp · pmax

b + C s · smax
b

)
+

E(Operating Cost (OC), as in Case I)︷ ︸︸ ︷∑
e∈E

(
πe · OCLL

e

)
,︸ ︷︷ ︸

Optimized in the lower level (LL)

(2)

s.t.:

E(Profit of ESO)︷ ︸︸ ︷∑
e∈E

πe ·
∑
b∈B

∑
t∈T

λe,t,b ·
(
dise,t,b · ℵdis − che,t,b/ℵch

)
≥

Rate-of-return︷︸︸︷
χ ·IC ,

(3)

IC ≤ ICmax︸ ︷︷ ︸
Investment Budget

, (4)

λe,t,b – Energy prices (LMP)
χ, ICmax – ESO’s investment parameters
ℵch,ℵdis – Charging/discharging efficiency
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Case II: Lower-Level Problem

min

Investment cost (IC)︷ ︸︸ ︷∑
b∈B

(
Cp · pmax

b + C s · smax
b

)
+

E(Operating Cost (OC), as in Case I)︷ ︸︸ ︷∑
e∈E

(
πe · OCLL

e

)
, (5)

s.t.: Investment constraints (6)

Minimum up- and down-time constraints (7)

Start-up and shut down trajectories (8){
min

∑
e∈E

(πe · OCLL
e ), (9)

Dispatch of generators, renewables, storage + network constraints (10)

Nodal power balance : (λe,t,b).

}
(11)
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Case II: Solution Technique

Reformulation into a single-level equivalent:

Step 1: Obtain the dual problem of the LL problems
Step 2: Invoke the strong duality theorem for the primal and dual LL
problems
Step 3: Introduce the UL constraints

Steps 1-3 lead to the single-level equivalent:

min

Investment cost (IC)︷ ︸︸ ︷∑
b∈B

(
Cp · pmax

b + C s · smax
b

)
+

E(Operating Cost (OC), as in Case I)︷ ︸︸ ︷∑
e∈E

(
πe · OCLL

e

)
,

subject to:

UL (investment) constraints, Eq. (6)-(8) ← nonlinear!!!
Primal LL (operational) constraints, Eq. (10)-(11)
Dual LL (operational) constraints
Conditions of the strong duality theorem
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Case II: Linearization of the Single-Level Equivalent

The profit constraint is non-linear due to the product of continuous
primal and dual LL variables:∑

e∈E
πe ·

∑
b∈B

∑
t∈T

λe,t,b ·
(
dise,t,b · ℵdis − che,t,b/ℵch

)
︸ ︷︷ ︸

Pe

≥ χ · IC . (12)

Eq. (12) can be exactly linearized using KKT-conditions and
complimentary slackness properties

This linearization suggests the following analytic conclusions:

Profit (Pe) is proportional to the investment decisions (pmax
b and smax

b )
and to the dual variables of ES dispatch constraints of the LL problem
In a perfectly competitive market, Pe is driven by the value provided by
ES to the system.
This value can be itemized for the power and energy capacity of ES
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Case Study: System Description

ISO New England test system:

Market-based view of the system
8 market zones, 13 transmission corridors, 76 thermal generators
2030 renewable portfolio & load expectations
ARPA-e projections on ES capital costs and characteristics:

0.81 – ES round-trip efficiency (rather conservative)
10 years – ES lifetime (realistic)
5% – Annual interest rate (rather optimistic)
Three capital cost scenarios: High ($75/kWh and $1300/kW), Medium
($50/kWh and $1000/kW), Low ($20/kWh and $500/kW)
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Impact of the Minimum Profit Constraint

Parameter χ ≥ 1 ensures the full investment recovery
χ = 0 → Eq. (31) is inactive → Case I
χ = 1 → Eq. (31) is active → Case II∑

e∈E

∑
t∈T

∑
b∈B

λe,t,b · (dise,t,b − che,t,b) ≥ χ · IC (13)

The profit constraints drive both the siting and sizing decisions
Reduction in the cumulative rating
More diversity in locations
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Impact of Capital Cost Scenarios

Three capital costs scenarios (C p and C s):∑
e∈E

∑
t∈T

∑
b∈B

λe,t,b · (dise,t,b − che,t,b) ≥ χ · IC , (14)

IC = Cp · pmax
b + C s · smax

b (15)

High capital cost scenario:
No need for siting optimization
Similar decisions to the centralized planning

Medium & Low capital cost scenarios:
Lower capital cost → variety in sizing and siting
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Impact of the ES Market Power

Market power mitigation by capping LMPs:∑
e∈E

∑
t∈T

∑
b∈B

λe,t,b · (dise,t,b − che,t,b) ≥ χ · IC , (16)

(1−∆λ) · λrefe,t,b ≥ λe,t,b ≥ (1 + ∆λ) · λrefe,t,b (17)

Exercising market power increases the ESO profit (P) with the profit-constrained
investment (χ = 1)

Exercising market power reduces the ESO net profit (∆ = P − IC) with the

profit-unconstrained investment (χ = 0)
Primarily due to the limited look-ahead capabilities.

(University of Washington) June 29, 2016 17 / 23



Impact of the ES Market Power

Market power mitigation by capping LMPs:∑
e∈E

∑
t∈T

∑
b∈B

λe,t,b · (dise,t,b − che,t,b) ≥ χ · IC , (16)

(1−∆λ) · λrefe,t,b ≥ λe,t,b ≥ (1 + ∆λ) · λrefe,t,b (17)

Exercising market power increases the ESO profit (P) with the profit-constrained
investment (χ = 1)

Exercising market power reduces the ESO net profit (∆ = P − IC) with the

profit-unconstrained investment (χ = 0)
Primarily due to the limited look-ahead capabilities.

(University of Washington) June 29, 2016 17 / 23



Impact of Coordinated Operations

Previously, the ESO profitability was enforced in a coordinated (system-wide)
fashion, i.e.: ∑

e∈E

∑
t∈T

∑
b∈B

λe,t,b · (dise,t,b − che,t,b) ≥ χ · IC . (18)

However, in practice ES can be operated independently, i.e.:∑
e∈E

∑
t∈T

λe,t,b · (dise,t,b − che,t,b) ≥ χ · ICb, ∀b ∈ B. (19)

Coordinated operations affects siting and sizing decisions
Reduction in the cumulative rating, but higher profits
Less diversity in locations
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Case III: How Can Transmission Expansion Be Modeled?

One more level is needed:

Master

Subproblem

ML Problem
(Transmission ex-
pansion problem)

LL Problems
(Market-clearing

problems)

UL Problem
(Merchant

storage problem)

ωlĉhetb, d̂isetb, geti

chetb, disetb

λetb

CCG decomposition is used to solve the tri-level model

Surprisingly computationally tractable!
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Case III: Impact of Transmission Expansion on Storage
Siting and Sizing with Different Storage Capital Costs

5 2.5 0 0.25

High

Med

Low 0.74 GWh

0.30 GWh

(a)

GW

5 2.5 0 0.25

High

Med

Low 0.44 GWh

0.25 GWh

(b)

GW

 

 

Added line capacity, GW Added storage capacity, GW

Figure: Line candidates include (a) lines directly connected to storage buses only; (b) all lines.

The trade-off between storage and transmission decisions is sensitive
to the capital cost scenario

No feasible storage installations for the high capital cost scenario

(University of Washington) June 29, 2016 20 / 23



Is There Any Value in Cases II and III?

Siting decisions are greatly affected by the perspective considered

Only three locations satisfy all three cases

Cases II and III have 7 locations in common

The number of ES locations in Case I, Case II, and Case III.
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(Data-Driven) Lessons Learned

The proposed approach facilitates the integration of merchant ES into
power systems

Perspectives matter:

Different siting and sizing decisions
Different investment costs and profits
Different utilization
Annual welfare losses - 2.3% if Case I is used instead of Case II
Annual welfare losses - 2.5% if Case I is used instead of Case III

Siting and sizing decisions are driven essentially by the capital cost

Profit constraint is important for cases with:

Large investment budgets
Low investment costs
Ability to exercise market power

Merchant ES can and will extract additional profits by influencing
LMPs, which comes at the expense of a larger system-wide operating
cost

(University of Washington) June 29, 2016 22 / 23



Thank you!
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