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Molecular Dynamics (MD) Methods

Example simulation: CdTe on CdSe growth

MD solves atom positions vs. time from
Newton’s equations for atomistic systems.

Example MD problems:
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MD Challenge: Interatomic Potential

1. Potential of your material does not exist; 2. Literature potential is not good enough.

1 JEN

To simulate growth, a potential must ensure a lower energy for the growth phase as compared to any other configurations!

A Zn-Cd-Hg-S-Se-Te potential achieves this: Zhou et al, PRB, 88, 085309 (2013).

E;=5.0eV, T=1200 K, R ~0.20 nm/ns
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R ~ 0.75 nm/ns
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MD Study of Graphene Growth: Interatomic Potential

1. Defects impact graphene properties; 2. Can MD reveal defect formation mechanisms?

It Validation of potential: Diamond formation

( H E M I S I RY Organic - Inorganic - Physical
Biological - Materials
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We developed a C potential.
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MD Simulations Graphene Growth on Copper

Detects at periphery of islands, [n-situ MD visualization

not boundaries between i1slands

(a) t=16 ps (§ ~ 0.04, carbon diffusion) (b) t = 480 ps (§ ~ 0.43, graphene nucleation)

©:cu e:C [ 5-memberring [l 7-member ring ~10A

(c) t=1584 ps (€ ~ 0.92, full coverage) (d) magnified view of framed region in (c)
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Potential

Misfit dislocations limit photovoltaic properties of CdTe/CdS films.

2. Can MD be used to guide misfit dislocations reduction?

1C

Interatom

1.

MD Study of CdTe/CdS Systems
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(] We have developed a high-fidelity bond order potential (BOP) for Cd-Te-Zn [Ward ¢t al, PRB, 85, 115206

(2012); PRB, 86, 245203 (2012); J. Mol. Model., 19, 5469 (2013)].
[ This potential captures property trends of variety of phases in addition to enabling crystalline growth of

zinc-blends CdTe.



[0001] Experimental Validation I: CdTe/CdS Defects
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Stacking fault —> [i 100]
HRTEM from Yan et al, JAP, 89, 5844 (2001).

Misfit dislocation




Experimental Validation II: CdTe/GaAs Misfit Dislocation

(a) BOP simulation (only Cd and the approximate “Ga” atoms are shown)

1 [010] Magnified examination
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(J We only have Cd-Te-Zn potential, so GaAs is
simulated as CdTe but lattice mismatch is
accurately captured by fixing the “CdTe” at
the GaAs lattice constant.

U Dislocation morphology and density

' [N obtained in MD simulations are similar to
ez [101]

— x [101]  those seen in experiments.
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Experiments from Vanderschaeve et al, J. Phys.: Condens. Matter, 12, 10093 (2000).



a and B Dislocation Mobility




MD Design of Dislocation-Free CdTe/CdS Solar Cells

—p: ~continuous (i.€., w = 0) CdTe film; wemm : ZnTe 1sland (w < 90nm)

Island growth technology:
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O Mistit dislocation always forms when misfit strain energy exceeds dislocation energy above critical film thickness.

 Islands relax misfit strain energy in 3D, can potentially prevent formation of mistit dislocations.

[ MD enables calculations of mistfit strain and dislocation energies in island configurations, which can be used to design
dislocation-free nanostructures [Zhou et al, Prog. Photovoltaics., 23, 1837 (2015) 7.



MD Study of Grain Structure Evolution

1. Photovoltaic properties of CdTe/CdS films are limited by grain boundaries.
2. Can MD be used to analyze grain boundary structures and their evolution?
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temperature = 1400 K, adatom energy 0.5 eV, growth rate 0.2 nm/ns

(d MD can be used to simulate the growth of polycrystalline films on amorphous substrates.
1 Grain Tracking Algorithm® can be used to analyze grain orientation evolution.

" Panzarino et al, JOM, 66, 417 (2014).



MD Guided Misfit Dislocation Theory Development

(@) MD. vs. traditional misfit dislocation theory (b) MD vs. improved misfit dislocation theory
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. In dislocation theory, system energy E(b,S,g) = E.(S,€) + E (b,S) (misfit + dislocation energies).

. Dislocation density is calculated by minimizing energy. Issues: Should b and S be measured from film or
substrate? Is E (b,S) expression accurate? Existing theories are only applicable for continuous films ...

. MD simulations guided more accurate E (b,S) derivation, showed that b and S should be from substrate
and film respectively. Zhou et al, J. Mech. Phys. Sol., 91, 265 (2016).



MD Study of Solid State Lighting InGaN Systems

1. Misfit Defects limit InGaN properties; 2. Can MD guide defect reduction?
MD Simulation - Experiments

7o T .,:i.',\ :s-‘:.'(ﬁ

(a) homologous temp (T/T_ = 0.56) (b) Homologous temp (T/T_ = 0.78)

adatom energy =1 eV
&Y 1. Zhou et al, J. Appl. Phys., 122, 235703 (2017); J.

Mater. Sci. Res., 6, 88 (2017).

, , 2. Gruberetal, JAP, 121, 195301 (2017).
I wurtzite [ Zinc-Blende [l Substrate [ | Other 3. Wuetal, APL, 68, 1372 (1996).

growth rate = 0.4 nm/ns

d Based on the InGaN potentials!, MD is used to explore InGaN growth on (0001) GaNZ.

d Surface morphology is similar to experimental observation®. Significant polytypism is observed with
the (0001) growth. Increasing temperature reduces surface roughness and associated defects



GaN on (1120) GaN

GaNona (1120) GaN at T/T,,=0.78 [ MD indicates that polytypism occurs
adatom energy =1 eV,.growth rate = 0.4 nm/ns on (0001) because there are three

l: ..-.Iq-l--'- -:_'u'“;h'_ '... S-

W wurtzite [l Zinc-Blende [} Substrate

(0001) planes A, B, C so both B and C
can form on A.

3 We hypothesize that (1120) growth
can eliminate polytypism as there are
only A and B (1120) planes.

(J MD simulations verifies this
hypothesis.

[ Reduced polytypism also helps reduce
other defects such as dislocations.

Other Chu et al, Phys. Rev. Mater., 2, 013402 (2018).



Mistit Dislocation in In Ga, N/GaN

(@) T/T,,=0.90,x = 0.0 (b) T/T,,=0.90,x =0.3 (c) T/T,,=0.84,x = 0.3
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MD Study of Rake Angle Effects of Cutting Too

diamond hamond
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MD simulations indicated that the cutting tool rake angle sensitively impacts the
damage. Large negative angles may increase the damage zone, but is needed to prevent

fracture of brittle workpiece.

Goel et al, Inter. J. Machine Tools Manufac., 88, 131 (2015).



MD Study of Anisotropic Effects of Si1C
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(110) plane

180° Symmetry (111)plane = 60/120° Symmetry

SiC was found to be highly anisotropic.



MD Study of Defect Zones on Surfaces

(a) 3D visualization of cutting (b) 2D comparison with experimental image
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M Unlike the conventional high pressure phase transformation mechanism, direct
amorphization was identified as the root cause of plasticity in silicon cutting.

[ The predicted formation of periodic nanogrooves at 45° to 55° agrees with experiments.
Goel et al, Acta Mater., 105, 464 (2016).



Single vs. Polycrystalline Samples

Minor Principal stress (GPa) y Minor Principal stress (GPa)
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J Chips from single crystalline Si samples are far more curl.
 The stress non-uniformity in the polycrystalline samples reduces the cutting force.

(J MD results in the “surface defect machining method” for reducing cutting strength, which has
been experimentally demonstrated. Goel et al, Acta Mater., 105, 464 (2016).



Summary

d MD indicated that defects in graphene are created at island periphery
at early stage rather than after 1slands impinge.

d MD, validated by experimental defect characteristics, indicated that
nanostructure can produce dislocation-free CdTe/CdS structures.

d MD can be used to study grain evolution.
d MD can guide the development of misfit dislocation theories.

d MD revealed dislocation formation mechanism in InGaN films, and
indicated that polytypism in can be removed by changing the growth
direction.

d MD provided insights to improve microfabrication.



Finite Element Method Exploration of Si Cutting

5, Mises
(Avg: 75%)

+2,480e+04
i+2.2?3e+04

+2.066e+04
+1.860e+04
+1.653e+04
L +1.446e+04
| +1.2408404
= +1.033e+04

+8.265e+03

+6.193e403
+4.133e403
+2.066e403

+0,000e+00

Conventional
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