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Metal carbonyls in catalysis ®

Metal carbonyl compounds photodissociate in the
UV to create reactive intermediates that aid
catalysis

Fe(CO); is known as the
prototypical model catalyst
which photodissociates

at 267 nm to form Fe(CO),

Ni(CO), is highly toxic and is rarely used in

modern indiistrial annlications
In popular culture [edit)

"Requiem for the Living" (1978), an episode of Quincy, M.E., features a poisoned, dying crime lord who asks Dr. Quincy
to autopsy his still-living body. Quincy identifies the poison—nickel carbonyl.



So why study specific M(CO), |

photodissociation pathways? |
M(CO),, photodissociation — ‘
pathways follow a standard 21"

set of rules:

‘Pump at ~267 nm (4.6 eV) to excite ——'\; .
a metal-to-ligand charge transfer = -

(MLCT) state S o

‘M(CO), relaxes to a dissociative . g

ligand f?eld (LF) state (S,) \\ . /— |
“M(CO). moves through a S,/S, R
conical intersection (40-70 fs after | I |
excitation) - PO >~ I
‘M(CO), -> M(CO),, +CO (~100 fs ™ reeon F"""’Sl
after excitation)



Fe(CO);. prototypical metal carbonyl? |

M(CO),, photodissociation
pathways follow a standard
set of rules:

« °‘Pump at ~267 nm (4.6 eV) to excite
a metal-to-ligand charge transfer

(MLCT) state C,

« °*M(CO), relaxes to a dissociative —
ligand field (LF) state (S,)
‘M(CQ),, moves through a S,/S,; I
conical intersection (40-70 fs after | I |
excitation) - PO >~ !
‘M(CO), -> M(CO),, +CO (~100 fs ™ reteol F”“"”Sl

HUGEEF Eie%tory is a bit more complicated than the
rules imply...



Fe(CO).. prototypical metal carbony!

' already breaking the rules
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Fe(CO),is a
ground state
triplet

Fe(CO);
dissociates to
the S, state of
Fe(CO), before
reaching the
S,/S, conical |
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Intersection
Additional
pathways r
(concerted loss |
of CO) are
possible!
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How does the electronic structure of
" Ni(CO), differ from other M(CO)_,?

1. Ni(CO), has a full d shell

2. No ligand field (LF) states, d->4s states
proposed to act as dissociative states

3. Symmetry prevents S,/S, conical
intersection

4. Ni(CO); luminescence is seen on a ns
timescale post-dissociation!

If Fe(CO), already challenges the standard
model, how much does Ni(CO), deviate?



Experimental and theoretical

"~ integration
Gas phase transient

absorption spectroscopy: ] I I
267 pump, IR probe -
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*Observe IR spectrum
changes in time

*Captures vibrational |
signaturesof L S |
P iasociatic |
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Experimental and theoretical
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photoproduct red shift?
photoproduct decay?
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Experimental fitting provides a set of mysterious time constants
corresponding to changes in the spectra



Experimental and theoretical
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Experimental fitting provides a set of mysterious time constants
corresponding to changes in the spectra



‘ Ni(CO), dissociation pathways
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Ni(CO), dissociation pathways
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Ni(CO), dissociation pathway
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Assigning time constants E

600 fs: }.._ > .,L' |

[
14 ps? }‘ -2  ee-@-ee -
55 ps”? f 2>  ee-(ee

14 ps is a long timescale for such a small barrie



Assigning time constants
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14 ps is a long timescale for such a small barrleﬂ



‘ Does 600 fs encompass both? E

PR }-**“w

Does 14 ps represent 3 > 27

.‘i"eu—c—u

i
What else could be going on? i
|




« | Are there any triplet states in the vicinity?

N W &~ O O N




+ | Are there any triplet states in the vicinity?
7

We may be seeing intersystem Crosing at
14ps or 55ps (in either Ni(CO), or Ni(CO),):

Currently calculating

* Anharmonic frequencies of singlet and
triplet species
» Spin-orbit coupling at key geometries

0 2 4 5 8 10
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What can ab initio molecular dynamics tell
us about these mechanisms?



* 1 On-the-fly ab initio molecular

dynamics
Pros:

* Powerful tool for
determining reaction
mechanisms,
timescales, and spectra °

» Gives electronic
structure at each point
along dynamical
trajectory

m.dz.fl?j B (‘9V -
J dt2 B aﬂfj

cons:

Many trajectories
needed for statistics

Computationally
expensive (relies on
electronic structure,
many trajectories
needed to get
statistics)

Potentials obtained on-
the-fly from ab initio
electronic structure
calculations
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Excited state AIMD on metal carbonyls is
non-trivial

* High density of states is challenging for
AIMD

‘reatment of non-adiabatic effects:

"ully-type surface hopping

« Electronic structure method must have
balance between accuracy and
computational efficiency

« TDDFT PBEO/cc-pVDZ (C,0),
Wachters+f (Ni) performed well in
benchmark PES cuts



Photodissociation dynamics over 1 ps

21




Early results: photodissociation dynamics
over 1 ps
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 Dissociation seen
at ~350ps

* Here: CO weakly
interacting with
Ni(CO),; up to 1 ps

* Further analysis of
electronic state
character
(d—>4s7?),
timescales, and
branching yields
underway




Early results: dynamics over 1 ps
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« High density of electronic states (15 states in 1eV)
« At ~550fs, Ni(CO), is formed on S1 surface, which
separates away from S,-S,; = maiches our 600fs time
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Future goal of dynamics: predicting E
experimental observables
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* Aim: create a windowing scheme to extract
transient absorption spectra from excited state
AIMD

M.G. Vazquez de Vasquez, K.A. Carter-Fenk, L.M. McCaslin, E.E. Beasley, J.B. Simpson, H.C. Allen, “Inherent Interfacial Electric
Fields and Fatty Alcohol and Acid Hydration as a Function of Temperature” (in review)

I T .
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Conclusions

2100

Experimental and theoretical
confirmation of 600 fs dissociation
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Potential energy surfaces indicate
both concerted and sequential CO
loss mechanisms
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Currently investigating role of triplet
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Non-adiabatic dynamics: timescales,
mechanisms, electronic character
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