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Historically, inverters have had a very simple
objective:

o Convert DC power to AC power regardless of
grid conditions.

o Maximize power injected into the grid.

Monumental shifts in inverter operations
occurred Sept 8th 2017:

o HIl and CA required advanced inverter
functionalities.

o Inverters expected to not only inject power,
but also support the grid through advanced
inverter functions.

> Voltage support, frequency support, or
grid disturbance.

o |IEEE 1547-2018 standardized for all of U.S.
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Advanced functions as defined in IEC TR 61850-90-7.
*FRT not included in IEC 61850-90-7, but is in Sandia Test Protocols.
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o Many units no longer operate at “nominal”
usage conditions.

o Impact of advanced inverter functions on lost
revenue (e.g. curtailment) have been
considered.

o Little to no discussion in long-term reliability
impact of advanced inverter functions.

Will an inverter operating at non-nominal operating
conditions have a significant effect on inverter
reliability?

Does this require updated reliability testing protocols
(by either manufacturers or standards making
bodies) to capture this?

Using the System Validation Platform (SVP):
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Advanced functions as defined in IEC TR 61850-90-7.
*FRT not included in IEC 61850-90-7, but is in Sandia Test Protocols.

o We have instrumented and autonomously measured inverter component stress for a variety of different

advanced inverter operating conditions

o Originally developed as flexible framework to autonomously measure system-level inverter operations

for certification




‘System Validation Platform (SVP) (1/2) |
4
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SunSpec Test Tool
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« Range of equipment drivers and test scripts for DER interoperability/electrical characterization experiments.
» Used to evaluate test procedures defined in IEEE 1547.1, UL1741 SA, and IEC TR 61850-90-7.

« Software platform written in Python:

o Includes ability to script actions for multiple hardware devices . I
o Uses a library of device drivers and abstraction layers:
> Drivers have been created for PV simulators, grid simulators, DER, data acquisition systems, load
banks, and switches I

4
> Allows the same test logic (SVP scripts) to be run at multiple laboratories with different equipment. I
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« UL 1741 SA test permutations are large due to the number of settings in each advanced DER function:
o ~75 measurements for fixed power factor - takes about 25 minutes with the SVP.

o ~375 measurements for volt/var - takes about 90 minutes with the SVP.
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Instead of characterizing the ability of the system to perform advanced inverter functions, can we harness
SVP to calculate component level stress metrics over a range of advanced inverter functions? >
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IHarnessing SVP for Reliability Measurements

New Tektronix oscilloscope driver and reliability
script were created.

Directly measures/calculates component stress.

IEEE 488.2 (SCPI)
messages sent with
PyVISA over TCP/IP

SunSpec

£

or

Proprietary
Modbus Read/
Write commands
over TCP/IP

Paired with SVP script to automate stress IEEE 488 2 (SCPI)
evaluation for a range of PV irradiance values and Tesm el
power factors.
IGBT
' H-Bridge

Produce inverter component stress maps under
different operating conditions.

100 kW Amstek N/ %%
. TerraSAS g 4z
Allows for flexible measurement PV Simulator 8 8
of any accessible component
inside the inverter —

Modbus Client

AC AC
Filter Breaker

R

o switches, capacitors,
inductors, etc.

Set of experiments to measure
loss of switches in H-bridge
and DC bus capacitor

Transformerless PV Inverter

Utility AC
Power



Measuring loss in H-bridge Switch -Setup (1/2)

« Autonomous run carried out to measure MOSFET switch loss in H-bridge:
o Single-phase, 3 kW inverter. I |

o Loss measured at power factors from -0.85 to 0.85in 0.1 increments.
o Ateach PF, 20 measurements taken serially and averaged together.
o Irradiance values of 200 W/m? to 1000 W/m? in 200 W/m? increments. _ |

Energy Loss (J)

4. Increment PF, irradiance, etc.

1. Measure Switch Voltage/Current B ICm T

time (s)

3. Cumulative switch loss per cycle

2. Calculate Switch Power I
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Eﬂ:ICIEI'IC)" VS, Power Factor

IMeasurmg loss in H- brldge Switch -Setup (2/2)
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o With increased irradiance.
o Atincreased positive power factor.

Total change in efficiency is approximately1%:
o Additional ~30 W of loss at high PF.

Switching loss is directly related to:
o lIrradiance level.
o Positive power factor:
» At high irradiance, also increase in switch loss
for negative power factor.
» Minimum loss at unity PF.
o Corresponds to ~10% of 30W loss expected by
system-level measurements.

« 1000 W/m? measurement switching loss affected by
system curtailment.

« Corresponds to device loss map as a function of
irradiance and PF.

System level efficiency shows increased loss: |
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1. Measure Capacitor Voltage/Current
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2. Fourier Transform and filter to ~120HZ

Capacitor degradation usually attributed to two
factors:

o Magnitude of Voltage stress.
o Self-heading due to current ripple (~120Hz)

Carried out tests on 3 devices from two
manufacturers:

|
o Manufacturer A, 3 kW single phase device.
o Manufacturer B, 3 kW single phase device.
o Manufacturer B, 24 kW three phase device. |
Data for power factors ranging from -0.85 to 0.85 in
0.5 step increments: I
o Magnitude of Current/Voltage across capacitor. I
o Voltage/Current ripple:

> Filtered Fourier Transform of waveform for
frequencies 110-130 Hz. o i



Efficiency
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Bus Voltage/Current Measurements—Results (1/3)
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Three different devices show significant differences.

Device 3 shows significantly higher efficiency
o Largest dependence of efficiency on PF

o 99.5% at high negative PF to a low of 96% at high positive PF

Device 2 maximum efficiency occurs at high positive PF with high irradiance
Device 1 shows a much smaller dependence on irradiance than Devices 2 and 3

Efficiency behavior is function both of control as well as topology

o Ex. if on-state losses are a large component of the total system loss - would expect a significant dependence
irradiance.
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Manufacturer A Single phase Manufacturer B Single phase Manufacturer B Three phase
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Mean Capacitor Voltage

Irradiance

« Significant increase in capacitor voltage when curtailing for all devices (as expected.
» Devices 1 and 2 show no dependence.

« Device 3 shows increasing voltage stress with irradiance.

Power Factor
* No dependence of capacitor voltage on power factor.



|Bus Voltage/Current Measurements—Results (3/3)

Manufacturer A Single phase Manufacturer B Single phase Manufacturer B Three phase
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Current Ripple

» For all devices, no dependence on either PF or irradiance.
« Device 2 and 3 have equivalent ripple magnitudes.
* Current ripple on Device 1 is 10x higher than Device 2 and 3.




Conclusions |
: @
« Demonstrated the utility of the SVP framework to be applied to automated reliability measurements.
» Described a method of incorporating traditional reliability measurement equipment (e.g.
oscilloscope) into the SVP:
o Can evaluate traces to calculate parameters of interest.

o Flexible with stress and component type.
o Can be utilized with any advanced inverter function (f-W, V-V, LVRT, etc).

« Utilized this framework to carry out example measurements on component stress as a function of
advanced inverter function:
o Measured switch loss as a function of power factor and irradiance level:
> Increasing loss at larger non-unity power factors.
> Replicated in system-level measurements.

o Measured capacitor voltage and current: |
« Voltage and current ripple shows no dependence on power factor. I



Future Work (1/2) |

. @
« We have presented a tool for characterizing component stress as a function of parameterized

advanced inverter operation. ‘

» This tool can be used to determine relative stress under different operating conditions.

« But how does this relate to fielded unit lifetime?

o Assuming:
» The relevant measured stress is the cause of failure.
> Stress can be linearized over the fielded mission profile.

o Then with:
» Mission profile of advanced inverter operation .
» Stress map. |

> Lifetime model.

It can be possible to find relative reduction in useful life. I



|Future Work (2/2)

== Regulator
J p ® Capacitor Advanced |
Inverter profile < |
.
. N o
b l 3 _,\'* Substation » U
< 12p0kvar "‘\_.,e )
sgrroliedl, InviB -
| )” ‘\'\ X i 900kvar
- 900kvhS (controlled)
e % “eontrolled)
‘: Y
R VN A ‘TII'T"
Ly 7 800kvari IEEE 8500-node

~ m———

*cﬂ:'-:
Inv A

Average Relative Aging Factor

_ZAF,, «

AF avg

AF=€

Lifetime Model

Eg( 1 1
R\ pInvA pInvB
J

J

-Count

3.5

|—|—l
-
[ ]
-
——
==
o
—
£
il'll

= | H; - . +IEIESH'E+

E 20tk 'I' - ) F+H
£ oof H"ﬂ'ﬁ'ﬁh i fffﬂ'.* 1

’ 1 wh-é [} E;E+EEF-T.'+

it e

0.0
—A1

m N
cter angle {degrees)

Stress Map

AT

Ensemble of Stress
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