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Introduction

Advantages/Disadvantages

Bayesian optimization in a nutshell
Bayesian optimization = Gaussian process + sampling strategy
Advantages:
I optimize with uncertainty consideration (e.g. noisy observations)
I active machine learning (balance exploration-exploitation)
I derivative free (avoid computing Jacobian)
I global optimization (convergence in probability to global optimum)
I good convergence rate (provable asymptotic regret)

Disadvantages:
I high-dimensionality
I scalability: computational bottleneck O(n3)
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Introduction

Bayesian optimization features

very versatile (open for methodological extensions)
I acquisition functions: PI, EI, UCB, Thompson sampling, entropy-based, KG, or combination among these
I constrained on objectives (known + unknown constraints)
I multi-objective (Pareto frontier/optimal, domination)
I multi-output
I multi-fidelity
I batch parallelization → asynchronous parallel
I stochastic, heteroscedastic
I time-series (forecasting, e.g. causal kernel)
I mixed-integer, e.g. discrete/categorical
I scalable to Big Data
I latent variable model
I gradient-enhanced
I high-dimensional (with low effective dimensionality or separable)
I physics-constrained: monotonic, discontinuous, symmetric, bounded
I outlier: student-t distribution
I non-stationary kernels
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Fundamentals

Classical GP: Fundamentals

Let Dn = {xi , yi}n
i=1 denote the set of observations and x denote an

arbitrary test points

µn(x) = µ0(x) + k(x)T (K + σ2I)−1(y−m) (1)

σ2
n (x) = k(x, x)− k(x)T (K + σ2I)−1k(x) (2)

where k(x) is a vector of covariance terms between x and x1:n.

Anh Tran GP and BO for materials science [23 / 159] SIAM UQ 22
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Fundamentals

Classical GP: Fundamentals
I assuming stationary kernel→ k(x, x′) only depends on r = ||x− x′||
I the covariance matrix: symmetric positive-semidefinite matrix made up of pairwise inner products

Kij = k(xi , xj ) = k(xj , xi ) = Kji (3)

I kernel choice: assuming unknown function is smooth to some degree
Matérn kernels:

Ki,j = k(xi , xj ) = θ
2
0

21−ν

Γ(ν)
(
√
2νr)νKν(

√
2νr), (4)

Kν is a modified Bessel fuction of the second kind and order ν.
Common kernels:

I ν = 1/2 : kMatérn1(x, x′) = θ20 exp (−r)
I ν = 3/2 : kMatérn3(x, x′) = θ20 exp (−

√
3r)(1 +

√
3r),

I ν = 5/2 : kMatérn5(x, x′) = θ20 exp (−
√
5r)

(
1 +
√
5r + 5

3
r2

)
,

I ν →∞ : ksq-exp(x, x′) = θ20 exp
(
− r2

2

)
Log (marginal) likelihood function:

log p(y|x1:n, θ) = −
n
2

log (2π)︸ ︷︷ ︸
data likelihood ↓ as n↑

−
1

2
log |Kθ

+ σ
2I|︸ ︷︷ ︸

“complexity” term
smoother covariance matrix

−
1

2
(y− mθ)

T
(Kθ

+ σ
2I)−1

(y− mθ)︸ ︷︷ ︸
“data-fit” term

how well model fits data
(5)
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Fundamentals

Classical GP: A Bayesian perspective
Mostly follow Quiñonero-Candela and Hansen 2004; Quiñonero-Candela
and Rasmussen 2005.
Denote training f, testing f∗, the joint GP prior is

p(f, f∗) = N
([

m
m

]
,

[
Kf,f K∗,f
Kf,∗ K∗,∗

])
. (6)

By Bayes’ rule

p(f∗|y) =
∫

p(f, f∗|y)df
= 1

p(y)

∫
p(y|f) p(f, f∗)df

= N (m + K∗,f[Kf,f + σ2I]−1(y−m),K∗,∗ −K∗,f[Kf,f + σ2I]−1Kf,∗),
(7)

Log (marginal) likelihood function:

log p(y|X) = log
∫

p(y|f)p(f|X)df
= − n

2
log (2π)− 1

2
log |Kf,f + σ2I|

− 1
2
(y−m)>(Kf,f + σ2I)−1(y−m).

(8)
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Fundamentals

Classical GP: A Bayesian perspective
A conditional of a Gaussian is also Gaussian.

Photo courtesy of from Lawrence 2016.

If
P(x, y) = N

([
µx
µy

]
,

[
A C

C> B

])
(9)

then
P(x|y) = N (µx + CB−1(y − µy),A− CB−1C>) (10)

(cf. App. A, Quiñonero-Candela and Rasmussen 2005).
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Acquisition

Acquisition function: How to pick the next point(s)
I how to pick the next point: exploitation (if σ2

A = σ2
B but µA > µB then

choose A) or exploration (if µA = µB but σ2
A > σ2

B then choose A). If
I different flavors:

1. probability of improvement (PI) Mockus 1982

αPI(x) = Φ(γ(x)), (11)

where
γ(x) =

µ(x)− f (xbest)

σ(x)
, (12)

2. expected improvement (EI) scheme Huang et al. 2006; Mockus 1975

αEI(x) = σ(x)[γ(x)Φ(γ(x)) + φ(γ(x)] (13)

3. upper confidence bound (UCB) schemeSrinivas et al. 2009, 2012

αUCB(x) = µ(x) + κσ(x), (14)

where κ is a hyper-parameter describing the exploitation-exploration
balance.

4. pure exploration∗:
I maximal MSE σ2(x) ⇔ maximal entropy: 1

2 log
[
2πσ2(x)

]
+ 1

2
I maximal IMSE

∫
x∈X σ2(x)

Anh Tran GP and BO for materials science [27 / 159] SIAM UQ 22
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Constraints

QRAK taxonomy for constrained optimization problem

Photo courtesy of Digabel and Wild 2015. Tree-based view of the QRAK taxonomy of constraints.

Constraints that are either not known beforehand or have to assessed through simulations are called unknown.
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Constraints

Constrained problems: known constraints
Problem statement
optimize f (x) subject to λ(x) ≤ c, λ(·) computationally cheap
known constraints:
I known before evaluation
I typically physics-based, e.g. total composition ≥ 100%
I formulated as inequality constraints λ(x) ≤ c, λ is computationally

cheap
I directly penalize the acquisition function α = 0 when constraints are

violated, i.e. λ(x) 6≤ c

αknown
constrained(x) = α(x)Iknown(x) (15)

where Iknown(x) is the indicator function

Iknown(x) =
{
1, λ(x) ≤ c
0, λ(x) 6≤ c

(16)

I can be conveniently ignored to become unknown constraints if the
model is aware of the constraints violation, i.e. returns error

Anh Tran GP and BO for materials science [29 / 159] SIAM UQ 22
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Constraints

Constrained problems: unknown constraints

Problem statement
optimize f (x) where f (x) may or may not exist
unknown constraints:
I can convert known → unknown but not vice versa
I form a probabilistic binary classifier to predict the probability mass

function of passing unknown constraint at x, i.e. kNN, AdaBoost,
RandomForest, GP, etc.

I penalize the acquisition function based on the predicted feasibility
from GP classifier

αunknown
constrained(x) =

{
α(x), with Pr(clf(x) = 1)

0, with Pr(clf(x) = 0)
(17)

I our approach:
I use another GP to learn when f (x) does not exist
I optimize the conditioned acquisition function

E[αunknown
constrained(x)] = α(x)Prunknown(clf(x) = 1)
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Parallel

Batch parallel on HPC
Might as well be beneficial when
computing resource is insufficient;
examples:
I P = 0.95 → SpeedUp ≈ 20

times
I CFD simulation takes 3 hours to

finish with 256 procs → 20
cases/60 hours

I or 60 hours (2.5 days) with 1
proc for 1 case → 256 cases/60
hours

I fixed computational budget: 256
×60 CPU hours

I observation: parallelizing
optimization can provide more
observations than parallelizing
the code

Amdahl’s law for parallelization.

Anh Tran GP and BO for materials science [31 / 159] SIAM UQ 22



GP and BO for materials science
Gaussian process / Bayesian optimization

Parallel

Asynchronous parallel on HPC

Batch-sequential parallel Multi-α asynchronous parallel
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Multi-fidelity

Multi-fidelity

Kennedy and O’Hagan Kennedy and O’Hagan 2000: auto-regressive model
based on a first-order auto-regressive relation between model output of
different levels of fidelity.
I s-levels of variable-fidelity model yt(x)s

t=1

I y1(x): cheapest, ys(x): most expensive
I auto-regressive model:

yt(x) = ρt−1yt−1(x) + δt(x) (18)

I Markov property: assuming that given yt−1(x), we can learn nothing
about yt(x) from any other model output yt−1(x′), for x 6= x′

Cov[yt(x), yt−1(x′)|yt−1(x)] = 0, ∀x 6= x′ (19)

Anh Tran GP and BO for materials science [33 / 159] SIAM UQ 22
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Multi-fidelity

Multi-fidelity

I model the lowest fidelity y1 as a classical GP
I model the discrepancies δt ’s as GPs
I for two levels of fidelity: �c = cheap, �e = expensive
I covariance vector and covariance matrix

k(x) = (ρkc(x) ke(x)), (20)

K =

(
σ2

c Kc ρσ2
c Kc(xc , xs)

ρσ2
c Kc(xs , xc) ρ2σ2

c Kc(xs , xs) + σ2
d Kd(xs , xs)

)
(21)
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Multi-fidelity

Selection of level of fidelity

Question: Fix a sampling location x∗, what level of fidelity should be
selected to query?
Compare computational cost vs. benefit:
I 1 ≤ t ≤ s: level of fidelity
I if x∗ is queried, how much uncertainty is reduced?
I at what cost?
I our approach: balance computational cost vs. gain (reduction of

uncertainty)

t∗ = argmin
t

(
Ct

∫
X
σ2(x)dx

)
, (22)

I promote high-fidelity if the cost is similar: If Ct∗ |D(t∗)| ≥ Cs |D(s)|
then choose s.

Anh Tran GP and BO for materials science [35 / 159] SIAM UQ 22
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Multi-objective

Multi-objective

Let:
I x = {xi}d

i=1 ∈ X ⊆ Rd be input in d-dimensional space,
I y = {yj}s

j=1 as s outputs.

argmax
x∈X

(f1(x), · · · , fs(x)) (23)

subjected to c(x) ≤ 0.
Pareto definition: x1 is said to dominate x2, denoted as x1 � x2, if and only if
∀1 ≤ j ≤ s, such that yj(x1) ≤ yj(x2), and ∃1 ≤ j ≤ s, such that yj(x1) < yj(x2).
Scalarization: multi-objective → single-objective

1. weighted Tchebycheff with `∞: y = max1≤i≤s wi (yi (x)− z∗i ),
2. weighted sum with `1: y =

∑s
i=1 wi yi (x),

3. augmented Tchebycheff with `1 + `∞:
y = max1≤i≤s wi (yi (x)− z∗i ) + ρ

∑s
i=1 wi yi (x),

z∗i denotes the inferred ideal i-th objective value; normalized weights: 0 ≤ wi ≤ 1,∑m
i=1 wi = 1; 0 < ρ < 1 positive constant.

Anh Tran GP and BO for materials science [36 / 159] SIAM UQ 22
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Multi-objective

Multi-objective

Hypervolume approach:
I hypervolume indicator, aka S-metric
I strictly monotonic
I complexity O(n log n + nd/2 log n)
I d = 3: lower and upper bounds O(n log n) Beume et al. 2009
I and any other sorts of approximation . . .

A near-optimal approach:
I Low-dimensional output (d ≤ 3): hypervolume estimator
I High-dimensional output (d > 3): Tchebycheff decomposition

Anh Tran GP and BO for materials science [37 / 159] SIAM UQ 22
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Mixed-integer

Mixed-integer
Main idea:

I decompose to a set of continuous and discrete variables
x = (xd , xc)

I enumerate xd and build a local GP for each xd
I form a Gaussian mixture prediction with adaptively weighted

average
I applicable when |xc | � |xd |, i.e. not combinatorial

optimization problems
I Gaussian mixture model predictions for posterior mean and

variance:

µ̂ =
∑

`∗∈B(`)

w`∗
(
µ̂
(`∗)

+ µ̄
(`) − µ̄

(`∗)︸ ︷︷ ︸
bias correction term

E[µ̂]=µ̄(`)

)
(24)

σ̂
2

=
∑

`∗∈B(`)

w2
`∗σ

2
(`∗) (25)

I weighted average estimation, weights depends on (1) cluster
distances, (2) original cluster predictions

I theoretical bounds for weighted average prediction
I asymptotic behavior when n →∞

Neighborhood B(`) of a local GP `

with xd = (3, 2), defined by

thresholding a similarity measure of

discrete tuples

Anh Tran GP and BO for materials science [38 / 159] SIAM UQ 22
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Mixed-integer

Mixed-integer

A special case: Wasserstein distance (Earth mover’s distance). Assume the
query point x = (xd , xc), where xd corresponds to `-th cluster.

w`∗ ∝
[
σ2

l + W2

(
N (y (`∗), σ2

(`∗)),N (y (`), σ2
(`))
)]−1

. (26)

W2

(
N (y (`∗), σ2

(`∗)),N (y (`), σ2
(`))
)
=
∥∥∥y (`) − y (`∗)

∥∥∥2+∥∥∥√σ2
(`) −

√
σ2
(`∗)

∥∥∥2
(27)

Weighted linear average prediction
The largest weight is associated with the `-th cluster.

Asymptotic analysis n → ∞
limn→∞ wl →∞, as σl → 0 and W2(·l , ·l) = 0.
Interpretation: If data is abundant, then the proposed approach converge
asymptotically to a single local GP prediction.
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Big Data

Sparse variational GP

Low-rank approximation for Kf,f

Low-rank approximation K ≈ K̃ = Kn×mK−1
m×mKm×n (cf. Section 8.1

Rasmussen 2006) and scales as O(nm2 + m3) instead of O(n3).
For n� m, this method scales as O(nm2).
Following Quiñonero-Candela and Rasmussen 2005; Quiñonero-Candela,
Rasmussen, and Williams 2007, Chalupka, Williams, and Murray 2013,
Vanhatalo et al. 2012, 2013.
Cost complexity:
I local GP: O(m3)

I sparse GP: O(nm2)

I classical GP (Cholesky decomposition): O
(
1
3
n3
)

I classical GP (LU decomposition): O
(
2
3
n3
)

I classical GP (QR decomposition): O
(
4
3
n3
)
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Big Data

Sparse variational GP
Follows Frigola, Chen, and Rasmussen 2014 and Rasmussen’s
corresponding slides. By Bayes’ rule,

p(f|y, θ) = p(y|f)p(f|θ)
p(y|θ) ⇔ p(y|θ) = p(y|f)p(f|θ)

p(f|y, θ) . (28)

The idea: approximate the (computationally intractable) p(f|y, θ) by a
(computationally tractable) parameterized variational q(f). For any q(f),

p(y|θ) = p(y|f)p(f|θ)
p(f|y, θ)

q(f)
q(f) ⇔ log p(y|θ) = log p(y|f)p(f|θ)

q(f) + log q(f)
p(f|y, θ) .

(29)
Apply

∫
q(f)df to both sides

log p(y|θ)︸ ︷︷ ︸
marginal likelihood

=

∫
q(f) log p(y|f)p(f|θ)

q(f) df︸ ︷︷ ︸
Evidence Lower BOund

+

∫
q(f) log q(f)

p(f|y, θ)df︸ ︷︷ ︸
KL(q(f)||p(f|y,θ))

(30)

Turn our attention to maximizing the variational ELBO (or equivalently
minimizing the KL divergence) instead of maximizing the log marginal
likelihood.
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High-dimensional

High-dimensional: Active subspace method
Formulations are derived by Constantine 2015; Constantine, Dow, and
Wang 2014
Ideas:
I approximate high-dimensional function f : X ⊂ RD → R
I perform SVD on covariance of gradient vector with descending

eigenvalues

E[∇f (x)∇f (x)>] = WDiag[λ1, . . . , λD ]W> (31)

Diag[λ1, . . . , λD ] = Diag[λ1, . . . , λd ]
⊕

Diag[λd+1, . . . , λD ], W = [W1 W2]

(32)
I rotate the inputs W1 ∈ RD×d ,W2 ∈ RD×(D−d)

f (x) = f (WW>x) = f (W1W>1 x + W2W>2 x) = f (W1y + W2z) (33)
I if z invariant in an inactive subspace λd+1 = · · · = λD = 0, then

f (x) = f (W1y): reduce from D to d
I work great if gradients are readily available
I but what if gradients are not available? estimation by GP? constrained

manifold optimization for W>1 besides the original optimization?
Anh Tran GP and BO for materials science [42 / 159] SIAM UQ 22
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High-dimensional

High-dimensional: Gaussian random projection

Mostly follow Wang et al. 2013, 2016. Main idea:
I choose (wisely) and optimize over Z ⊂ Rd

I embed and project onto high-dimensional space as x← pX (Az)
I A ∈ RD×d : tall-and-skinny random matrix with standard normal

element

Photo courtesy of Wang et al ibid. Optimizing a 2d

function (with 1d active subspace) via random

embedding.

REMBO algorithm ibid. with deviation from BO
highlighted.
1: generate a random matrix

A ∈ RD×d : aij ∼ N (0, 1)

2: choose the bounded region set Z ⊂ Rd

3: D0 ← ∅
4: for i = 1, 2, · · · do
5: locate next sampling point

zi+1 ← argmaxz∈Z a(z) ∈ Rd

6: query
Di+1 ← Di ∪ {zi+1, f (pX (Azi+1))}

7: update GP
8: end for

Anh Tran GP and BO for materials science [43 / 159] SIAM UQ 22
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High-dimensional

High-dimensional: Gaussian random projection
x
∈
R

D

1

=

D
ro

ws A

d cols

z
∈
R

d

1

A random embedding or a random projection x = Az

is built as a corollary from the Johnson-Lindenstrauss

lemma, where A is a random normal matrix.

Lemma (Johnson-Lindenstrauss)
Given n points {xi}n

i=1, each of which is in RD ,
A ∼MND×d (0, I, I), and let z ∈ Rd defined as
z = A>x. Then, if d ≥ 9 log n

ε2−ε3
, for some

ε ∈
(
0, 1

2

)
, then with probability at least 1

2
, all

pairwise distances are preserved, i.e. for all i, j, we
have

(1− ε)‖xi − xj ‖22 ≤ ‖zi − zj‖
2
2 ≤ (1+ ε)‖xi − xj ‖22

(34)

Compared to active subspace
method: also linear and does not
require gradient and the rotation
matrix W>.
There are alternative approaches, e.g.
additive GP.
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Gaussian process / Bayesian optimization

Analysis

Convergence rate analysis

Regret of action xt :
rt = |f (x∗)− f (xt)| > 0, (35)

where x∗ = argmaxx∈X f (x).
Aim to minimize the cumulative regret at the horizon T

RT =
∑
t<T

rt . (36)

No-regret in infinite horizon: limT→∞ rT = limT→∞
RT
T = 0

→ motivation for sublinear bounds of RT , or more precisely,
O(RT ) ≤ O(T ).
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Analysis

Convergence rate analysis

xt = argmax
x∈D

µt−1(x) + β
1/2
t σt−1(x) (37)

For αUCB with Matérn kernel: see Srinivas et al. 2009, 2012; tighter
bounds for UCB in noiseless environment, see De Freitas, Smola, and
Zoghi 2012.

Theorem (O(
√

T ) Srinivas et al. 2009)
Let δ ∈ (0, 1), and βt = 2 log

(
|D|t2π2

6δ

)
, then

Pr
(

RT ≤
√

C1TβTγT

)
≥ 1− δ, (38)

where C1 = 8
log(1+σ−2)

.
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Analysis

Convergence rate analysis

Proof.
Sketch of proof Srinivas et al. 2009

1. pick δ ∈ (0, 1), set βt = 2 log
(
|D|πt

δ

)
, then

Pr
(
|f (x)− µt−1(x)| ≤ β

1/2
t σt−1(x)

)
≥ 1− δ (39)

2. bound rt of action xt
rt ≤ 2β

1/2
t σt−1(xt) (40)

3. associate information gain with posterior variance
I(yT ; fT ) =

1
2

∑T
t=1 log(1 + σ−2σ2

t−1(xt))

4. C1 = 8
log(1+σ−2)

:

Pr
(

R2
T/T ≤

T∑
t=1

r2t ≤ βT C1I(yT ; fT ) ≤ C1βTγT

)
≥ 1− δ. (41)
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Analysis

Convergence rate analysis
I αUCB with noisy GP: rt = O

(
1√

t

)
.

I αUCB noiseless setting, see De Freitas, Smola, and Zoghi 2012:

rt = O
(

e
− τ t

(ln t)d/4
)

.

I αEI, see Bull 2011:

rt =

{
O(t−ν/d(log t)α), ν ≤ 1

O(t−1/d), ν > 1
(42)

I batch parallel with batch size K αBUCB, see Desautels, Krause, and
Burdick 2014:

rK
t = O

(
C
√

log(tK)

tK γtK

)
(43)

I batch parallel with batch size K αUCB-PE, see Contal et al. 2013

rK
t = O

(√
log(t)

tK γtK

)
(44)
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Connection to deep learning

Connection to deep learning

x1

x2

x3

xn

...

h(1)
1

h(1)
2

h(1)
m

...

y1

yk

...

Input
layer Hidden

layers Output
layer

Pioneered by Neal 1996: 1 hidden
layer with infinite number of nodes,
i.e. m→∞
For every output node yi , 1 ≤ i ≤ k,

yi(x) = b1
i +

m∑
j=1

W 1
ij h(1)

j (x) (45)

For every hidden node h(1)
i ,

1 ≤ i ≤ m,

h(1)
i (x) = φ

(
b0

i +

n∑
j=1

W 0
ij xj

)
,

(46)
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Connection to deep learning

Connection to deep learning

Weights and bias are i.i.d ⇒ yi is Gaussian (by Central Limit Theorem)

K(x , x ′) ≡ E [yi(x)yi(x ′)]
= σ2

b + σ2
wE
[
h(1)

i (x), h(1)
i (x ′)

]
≡ σ2

b + σ2
w C(x , x ′)

(47)

Single-layer, infinite width: yi , yj : joint Gaussian, zero covariance, and
independent

yi ∼ GP(µ,K) (48)

For φ(x) = max(0, x), i.e. ReLU, the equivalent kernel is arccosine (cf.
Cho and Saul 2009).

Anh Tran GP and BO for materials science [50 / 159] SIAM UQ 22



GP and BO for materials science
Gaussian process / Bayesian optimization

Connection to deep learning

Connection to deep learning
More general results available from Lee et al. 2018 (cf. Appendix C), as
mL →∞, ·,m1 →∞, i.e. multi-layer, infinite width, NN is still equivalent
to a GP.

x1

xn

...

h(1)
1

h(1)
2

h(1)
m1

...

h(2)
1

h(2)
2

h(2)
3

h(2)
m2

...

h(3)
1

h(3)
2

h(3)
3

h(3)
4

h(3)
m3

...

h(L)
1

h(L)
k

...

Input
layer

Hidden
layers Output

layer

At the last layer L,

lim
mL→∞,...,m1→∞

p(h(L)|x) = GP
(

h(L); 0, (G ◦ (F ◦ G)) (K0)
)

(49)
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Benchmark functions (numerical)

Gaussian process / Bayesian optimization

ICME applications
Benchmark functions (numerical)
Flip-chip BGA package design (FEM)
Heart valve optimization (FEM)
Pump design optimization (CFD)
Inverse problems in process-structure (kinetic Monte Carlo)
Inverse problems in composition-property (DFT + MD)
Inverse problems in structure-property (CPFEM)

Conclusion
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Benchmark functions (numerical)

2d three-hump camel
(joint work w/ Yan Wang)

2d three-hump camel.
Convergence comparison with different classifiers.
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Benchmark functions (numerical)

Speed reducer design optimization
(1d+6d) (mixed-integer)

(joint work w/ Yan Wang)

Speed reducer design
Comparison against GA.
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Benchmark functions (numerical)

High-dimensional discrete sphere function
(5d+50d) (mixed-integer)

(joint work w/ Yan Wang)

f (x(d), x(c)) =
f (x1, · · · , xn, xn+1, · · · , xm) =∏n

i=1 |xi |
(∑m

j=n+1 x2j
)

where
1 ≤ xi ≤ 2(1 ≤ i ≤ n) are n integer
variables and
−5.12 ≤ xj ≤ 5.12(n + 1 ≤ j ≤ m) are
m − n continuous variables.

Comparison against GA.
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Benchmark functions (numerical)

Multi-objective: 2 objectives
(joint work w/ Mike Eldred)

ZDT1. ZDT3.
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Benchmark functions (numerical)

Multi-objective: 3 objectives
(joint work w/ Mike Eldred)

DTLZ2. DTLZ5.
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Benchmark functions (numerical)

Multi-fidelity: borehole8d
(joint work w/ Scott McCann, Tim Wildey)

fH(x) =
2πx3(x4 − x6)

log(x2/x1)
(
1 + 2x7x3

log(x2/x1)x21 x8
+ x3

x5

) , (50)

fL(x) =
5x3(x4 − x6)

log(x2/x1)
(
1.5 + 2x7x3

log(x2/x1)x21 x8
+ x3

x5

) . (51)

Borehole function (8d) - 2 levels of fidelity.
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Benchmark functions (numerical)

Asynchronous parallel
(joint work w/ Mike Eldred)

f (x) =
1

0.839

1.1−
4∑

i=1

αi exp

− 3∑
j=4

Aij (xj − Pij )
2

 , (52)

Hart4 function, t ∼ U[30, 900] on X = [0, 1]4.

Asynchronous parallel vs. batch-parallel on egg function.
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Benchmark functions (numerical)

Sparse GP for Big Data
(joint work w/ Bart G van Bloemen Waanders)

I Intel Xeon Platinum 8160 CPU @ 2.10GHz
I 24 cores, 48 threads
I RHEL 7.1 (Maipo)
I 180 GB of memory

I sphere function y =
(∑3

i=1 xi
)2

,

X = [−1, 1]3

I training data points:
n ∈ {101, 102, . . . , 106}

I number of inducing points:
m ∈ {10, 50, 100, . . . , 300}

I GPstuff with SuitSparse toolbox on MATLAB
I m = 300, n = 106 takes ∼48 minutes

Benchmark of training time.
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Benchmark functions (numerical)

Sparse GP for Big Data
(joint work w/ Bart G van Bloemen Waanders)

Benchmark of testing time. Benchmark of accuracy.

Anh Tran GP and BO for materials science [60 / 159] SIAM UQ 22



GP and BO for materials science
ICME applications

Benchmark functions (numerical)

High-dimensional (with low effective dimensionality): Gaussian random
projection
(joint work w/ Bart G van Bloemen Waanders)

The modified ZDT1 function, which is defined on
[−1, 1]D , is

f2(x) = g

1−

√
x21
g

 , (53)

where g = 1 + 9
(∑D

i=2
xi

D−1

)2
.

I (non-unique) global minimizer
x∗ = [1, 0, . . . , 0]

I f2(x∗) = 0

I D = 104

I d = 10

I de = 2

Convergence plot with D = 10, 000, d = 10.

Anh Tran GP and BO for materials science [61 / 159] SIAM UQ 22



GP and BO for materials science
ICME applications

Flip-chip BGA package design (FEM)

Flip-chip BGA package design (FEM)
(joint work w/ Scott McCann (Xilinx))

FE model geometry

I 2.5D FE on (ANSYS) APDL: half symmetry to reduce comp.
I evaluate component warpage at 20◦C and 200◦C, and the strain energy density to predict the fatigue

life of the solder joints during thermal cycling
I two levels of fidelity: varies mesh density parameter
I average comp. time: 0.4 CPU hr for low-fidelity, ∼ 1 CPU hr for high-fidelity
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Flip-chip BGA package design (FEM)

Flip-chip BGA package design (FEM)
(joint work w/ Scott McCann (Xilinx))

FE model

Conv. plot at high-fidelity

Anh Tran GP and BO for materials science [63 / 159] SIAM UQ 22



GP and BO for materials science
ICME applications

Heart valve optimization (FEM)

Heart valve optimization (FEM)
(joint work w/ Yan Wang, Wei Sun)

(A) Parameterization of 2D leaflet geometry; (B) 3D

attachment edge shape; (C) Template leaflet mesh

and nodes transformation.

(A) 3D suturing line; (B) 2D attachment edge; (C)

2D-to-3D transformation; (D) Node and element

mid-leaflet sets.
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Heart valve optimization (FEM)

Heart valve optimization (FEM)

Comparison of nominal (left) and optimized (right) designs for bovine (top) and porcine (bottom) leaflet

materials under diastolic pressurization.
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Pump design optimization (CFD)

Impeller design optimization using CFD
(joint work w/ GIW Industries)

Design evolution of 33d slurry pump impeller using a solid-liquid multi-phase CFD
package.
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Pump design optimization (CFD)

Casing design optimization using CFD
(joint work w/ GIW Industries)

Design evolution of 14d slurry pump casing using a solid-liquid multi-phase CFD
package.
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

Reference
Anh Tran et al. (2020a). “An active-learning high-throughput
microstructure calibration framework for process-structure linkage in
materials informatics”. In: Acta Materialia 194, pp. 80–92

I process: x + δ, δ ∼ U [δ, δ] – controllable within a tolerance δ

I (micro)structure – spatio-temporal noisy, questionable microstructure representations
(physics-based vs. data-driven), image (i.e. high-dimensional), limited/scarce data

I property: y = f (x) + ε, ε ∼ N (0, σ2) – noisy observations

COMPOSITION PROCESS STRUCTURE PROPERTY PERFORMANCE
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

A formal problem statement:
I there exists a forward tool f (·) to predict microstructure, u = f (x)

(represented as images)
I given a target u∗ (represented as images)
I task: find x∗ such that f (x∗) = u∗ ≈ u
≈ is defined in the sense of statistical equivalence for microstructures, pD
is the p.d.f. of statistical microstructure descriptors D, i.e.

pD : Ω→ L1 : pD(u∗) ≈ pD(u) (54)

d
(

pD(u∗), pD(u)
)
≤ TOL (55)

Hint: quantitatively differentiate microstructures using statistical
microstructure descriptors
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

An asynchronous parallel Bayesian optimization workflow for inverse problems in process-structure linkage.
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

Collecting local + global statistical microstructure
descriptors given a microstructure.
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

Reverse engineering an AM specimen through kinetic Monte Carlo
(Sandia/SPPARKS).
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Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property
(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

Reference
Active learning from chemical composition space to material property
Anh Tran et al. (2020b). “Multi-fidelity machine-learning with uncertainty
quantification and Bayesian optimization for materials design: Application
to ternary random alloys”. In: The Journal of Chemical Physics 153 (7),
p. 074705.
Main ideas:
I Forward models:

I MD-MLIAP: low-fidelity (low accuracy, low cost)
I DFT: high-fidelity (high accuracy, high cost)

I Exploit correlation between low- and high-fidelity models
I Input: chemical composition
I Output/QoI: bulk modulus B0

I What chemical composition would optimize the QoI?
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Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property
(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

Ab-initio:
I DFT implemented in Quantum

ESPRESSO
I high cost + high accuracy
→ high-fidelity

MD:
I MD with ML interatomic

potential (SNAP)
I orders of magnitude faster
I low cost + low accuracy
→ low-fidelity

Birch-Murnaghan polynomials for B0:

E(V ) = E0+
9V0B0

16

B′
0

( V0

V

) 3
2 − 1

3

+

( V0

V

) 3
2 − 1

2 6− 4

( V0

V

) 3
2


(56)

EOS calculations for 6 configs. red line: DFT; blue

line: MD + SNAP
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Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property
(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

R2 = 0.7122: not exactly the same
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Multi-fidelity GP ≈ high-fidelity: DFT.
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Inverse problems in structure-property
(joint work w/ Tim Wildey)

Reference
Anh Tran and Tim Wildey (2020). “Solving stochastic inverse problems for
property-structure linkages using data-consistent inversion and machine
learning”. In: JOM 73, pp. 72–89
Main ideas:
I require some statistical treatment for stochastic microstructure, due to

the inherent randomness
I parameterize deterministic λ as microstructure features, e.g. average

grain size, Weibull parameters, etc.
I sample N microstructure RVE (DREAM.3D)
I run crystal plasticity over RVE ensemble (DAMASK)
I collect Q(λ) as quantities of interest
I approximate Q(·) by machine learning, e.g. heteroscedastic GP
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microstructure generation

microstructure propertiesmachine learning

spatially average

DREAM.3D

DAMASK

crystal plasticity

finite element model

ParaView
DAMASK MTEX

PETSc

Microstructure-homogenized properties map over an ensemble of microstructures with a heteroscedastic GP.
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Stochastic forward vs. stochastic inverse problems in structure-property context.

I stochastic forward: given uncertain input λ → uncertain output Q(λ)

I stochastic inverse: given uncertain output Q(λ) → uncertain input λ
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Ensemble average yield stress via Monte
Carlo with different grain sizes

Comparison: GP (ML/UQ) and the
Hall-Petch (ordinary least square)
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Initial density and updated density:
normal case

Comparison: Distributions of materials
properties
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Takeaway message
Gaussian process is a versatile machine learning, uncertainty quantification,
and optimization toolbox for ICME applications.
This talk: two parts
I theoretical / computational aspects of Gaussian process and Bayesian

optimization
I constrained (known + unknown)
I batch-sequential and asynchronous parallel
I multi-objective
I multi-fidelity
I Big Data, high-dimensional

I ICME applications
I density functional theory: Quantum ESPRESSO
I molecular dynamics: LAMMPS
I kinetic Monte Carlo: SPPARKS
I crystal plasticity finite element: DREAM.3D + DAMASK
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Thank you for your time and listening.
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Sparse variational GP
I p(·): true pdf
I q(·): approximate pdf

Assume the fully independent training conditional
(FITC) Quiñonero-Candela and Rasmussen 2005; Quiñonero-Candela,
Rasmussen, and Williams 2007, augment the joint model p(f∗, f) as

p(f∗, f) =
∫

p(f∗, f, u)du =

∫
p(f∗, f|u)p(u)du, (57)

u: inducing variables at m locations Xu. The training and testing
conditionals are

p(f|u) = N (m + Kf,uK−1
u,u(u−m), Kf,f − Qf,f), (58)

and
p(f∗|u) = N (m + K∗,uK−1

u,u(u−m), K∗,∗ − Q∗,∗), (59)
where

Qa,b := Ka,uK−1
u,uKu,b. (60)

The likelihood and inducing priors remain the same, i.e.
p(y|f) = N (f, σ2I), and p(u) = N (m,Ku,u).
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Sparse variational GP
FITC training prior based on the inducing priors is modified as

q(f|u) =
n∏

i=1

p(fi |u) = N (m + Kf,uK−1
u,u(u−m),Diag[Kf,f − Qf,f]) (61)

and keeping the testing prior the same

q(f∗|u) = p(f∗|u) = N (m + K∗,uK−1
u,u(u−m), K∗,∗ − Q∗,∗), (62)

the effective prior under the FITC assumption is

q(f, f∗) = N
([

m
m

]
,

[
Qf,f − Diag[Qf,f −Kf,f] Qf,∗

Q∗,f K∗,∗

])
, (63)

which implies the testing distribution as

q(f∗|y) = N (m + Q∗,f(Qf,f + Λ)−1(y−m),K∗,∗ − Q∗,f(Qf,f + Λ)−1Qf,∗)
= N (m + K∗,uΣKu,fΛ

−1(y−m),K∗,∗ − Q∗,∗ + K∗,uΣKu,∗)
,

(64)
where Σ = [Ku,u + Ku,fΛ

−1Kf,u]
−1 and Λ = Diag[Kf,f − Qf,f + σ2I].
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The marginal likelihood conditioned on the inducing inputs is therefore

q(y|Xu) =

∫ ∫
p(y|f)q(f|u)p(u|Xu)dudf =

∫
p(y|f)q(f|Xu)df, (65)

which implies the log marginal likelihood as

log q(y|Xu) = −
n
2

log(2π)− 1

2
log |Qf,f+Λ|− 1

2
(y−m)>[Qf,f+Λ]−1(y−m),

(66)
where Λ = Diag[Kf,f − Qf,f] + σ2I.
Cost complexity: O(nm2) Li, Kwok, and Lü 2010; Williams and Seeger
2001. (Note: do not multiply matrices directly – cf. Section
14.3 Martinsson and Tropp 2020).
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Mostly follow Titsias 2009a; Titsias 2009b and Bonilla, Krauth, and Dezfouli 2019.
Definition of conditionally independent condition:

p(f|u, y) = p(f|u), (67)

which implies p(f, u|y) = p(f|u, y)p(u|y) ≈ q(f, u) = p(f|u)q(u), where q(u) is the approximate
variational posterior. Main tool: Jensen’s inequality.

log q(y|Xu) = log
∫ ∫

p(y|f)q(f|u)p(u|Xu)×
q(u,f)
q(u,f) dudf

≥
∫ ∫

q(u, f) log p(y|f)q(f|u)p(u|Xu)
q(u,f) dudf

=
∫ ∫

p(f|u)q(u) log p(y|f)��q(f|u)p(u|Xu)
��p(f|u)q(u) dudf

=
∫

q(u)
{∫

p(f|u) log p(y|f)df + log p(u|Xu)
q(u)

}
du

=
∫

q(u)
{

log G(u, y) + log p(u|Xu)
q(u)

}
du

=
∫

q(u)
{

log G(u,y)p(u|Xu)
q(u)

}
du := FV (Xu, u),

(68)

log G(u, y) =
∫

p(f|u) log p(y|f)df
=

∫
p(f|u)

{
− n

2
log(2πσ2)− 1

2σ2 Tr
[
yy> − 2yf> + ff>

]}
df

= − n
2

log(2πσ2)− 1
2σ2 Tr

[
yy> − 2yα> + αα> + Qf,f − Kf,f

]
= N (y|α, σ2I)− 1

2σ2 Tr[Cov(α)],

(69)
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where α = f|u, with

E[α] = E[f|u] = m + Kf,uK−1
u,u(u−m) (70)

and
Cov[α] = Cov[f|u] = Kf,f − Qf,f = Kf,f −Kf,uK−1

u,uKu,f. (71)

Reverse Jensen’s inequality to maximize the variational evidence lower
bound FV (Xu, u) w.r.t. q(u)

FV (Xu, u) =
∫

q(u)
{

log G(u,y)p(u|Xu)
q(u)

}
du

≤
∫

log G(u, y)p(u|Xu)du
= log[N (y|m, σ2I + Qf,f)]− 1

2σ2 Tr
[
Kf,f −Kf,uK−1

u,uKu,f
]
=: FV (Xu)

(72)
Train sparse GP by maximizing FV (Xu). See also Vanhatalo et al. 2012,
2013, Bauer, Wilk, and Rasmussen 2016; Burt, Rasmussen, and Wilk
2020, Matthews et al. 2016.
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