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Gaussian process / Bayesian optimization

Introduction

Advantages/Disadvantages

Bayesian optimization in a nutshell
Bayesian optimization = Gaussian process + sampling strategy
Advantages:
> optimize with uncertainty consideration (e.g. noisy observations)
» active machine learning (balance exploration-exploitation)
» derivative free (avoid computing Jacobian)
> global optimization (convergence in probability to global optimum)
> good convergence rate (provable asymptotic regret)
Disadvantages:
» high-dimensionality
> scalability: computational bottleneck O(n?)
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Gaussian process / Bayesian optimization

Introduction

Bayesian optimization features

very versatile (open for methodological extensions)

P acquisition functions: PI, EI, UCB, Tt ling, entropy-based, KG, or bination among these
P constrained on objectives (known + unknown constraints)

P multi-objective (Pareto frontier/optimal, domination)

P> multi-output

> multi-fidelity

» batch parallelization — asynchronous parallel

P stochastic, heteroscedastic

P time-series (forecasting, e.g. causal kernel)

P mixed-integer, e.g. discrete/categorical

P scalable to Big Data

> latent variable model

P gradient-enhanced

P high-dimensional (with low effective dimensionality or separable)

P physics- d ic, di symmetric, bounded
> outlier: student-t distribution

P non-stationary kernels
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Gaussian process / Bayesian optimization

Fundamentals

Classical GP: Fundamentals

Let D, = {xi, yi}/=1 denote the set of observations and x denote an
arbitrary test points

pin(%) = o) + k()T (K + 0*1) " (y — m)
on(x) = k(x,x) —k(x)" (K + ¢°T) " 'k(x)

where k(x) is a vector of covariance terms between x and X1.p.

(1)
)
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Fundamentals
I

Classical GP: Fundamentals
> assuming stationary kernel — k(x, x”) only depends on r = ||x — x/||
P the covariance matrix: symmetric positive-semidefinite matrix made up of pairwise inner products

Kj = k(xi,x;) = k(xj,%x;) = Kj; (3)

> kernel choice: assuming unknown function is smooth to some degree
Matérn kernels: .

K;j = k(xj, x; (V2ur)Y Ky, (V2vr), (4)

)_9°r<>

K, is a modified Bessel fuction of the second kind and order v.
Common kernels:

> v =1/2: kyatem1 (x,X') = 03 exp (=)

> v =3/2: kpmaterns (%, x,) = 0% exp (—\/gr)(l + \/gr)

> v =5/2: kpatéms (X, X)) = 08 exp (—V/5r) (1 + VBr+ %rQ),

2
> v — 00 : ksgexp (X, x') = 9(2; exp (—’7)

Log (marginal) likelihood function:

_ n 1 0 2 1 T 10 20 -1
logp(ylxiin, 0) = = log(2m)  — CloglK" + o071 — (y —mg) (K + 07" (y —my)
N———
data likelihood | as n1 “complexity” term “data-fit” term
smoother covariance matrix how well model fits data
®)
I
SIAM UQ 22
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Gaussian process / Bayesian optimization

Fundamentals

Classical GP: A Bayesian perspective

Mostly follow Quifionero-Candela and Hansen 2004; Quifionero-Candela
and Rasmussen 2005.
Denote training f, testing f., the joint GP prior is

o= () et ) ©

S PELly)df
5 S p(If) p(F £.)df
N(m + K, ¢[Ker + 021]’1(), —m), K. . — K. ¢[Kes+ 021],11(“)’

By Bayes' rule

p(£ly)

()
Log (marginal) likelihood function:
logp(y[X) = log [ p(yIf)p(fIX)df
= —Zlog(2m) — % log[Kes+ o) (8)

—5(y—m) " (Kee+ 0”I) " (y — m).

Anh Tran
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Fundamentals

Classical GP: A Bayesian perspective
A conditional of a Gaussian is also Gaussian.

T

_/ A
e
10

Photo courtesy of from Lawrence 2016.

x4 D) o

P(xly) = N(ux + CB™ ' (y — ny),A— CB™'CT) (10)
(cf. App. A, Quifionero-Candela and Rasmussen 2005).

then

|
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Gaussian process / Bayesian optimization

Acquisition

Acquisition function: How to pick the next point(s)

> how to pick the next point: exploitation (if o5 = 0% but pa > g then
choose A) or exploration (if 1a = pg but 03 > o then choose A). If
> different flavors:
1. probability of improvement (Pl) Mockus 1982

api(x) = ®(y(x)), (11)
where

’Y(X) — /J'(X) ;(igxbest)7 (12)

. expected improvement (El) scheme Huang et al. 2006; Mockus 1975

agi(x) = o(®X) [ (x)2(v(x)) + (v(x)] (13)

. upper confidence bound (UCB) schemeSrinivas et al. 2009, 2012

ayc(x) = p(x) + ro(x), (14)

where k is a hyper-parameter describing the exploitation-exploration
balance.

. pure exploration™:

> maximal MSE o2 (x) <> maximal entropy: 1 log [2m0®(x)] + 1
> maximal IMSE [ _ . o2 (x)

Anh Tran
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Constraints

QRAK taxonomy for constrained optimization problem

‘simutation-based optimization
Known or Hidden?

| osormeain |
Ao it
% Mumwmﬁ %
%% Ouaniatlo o Norauatatle? % % %

ke ke | ol e B e

Photo courtesy of Digabel and Wild 2015. Tree-based view of the QRAK taxonomy of constraints.

Constraints that are either not known beforehand or have to assessed through simulations are called unknown.
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Constraints

Constrained problems: known constraints

Problem statement
optimize f(x) subject to A(x) < ¢, A(-) computationally cheap

known constraints:

>
>
>

known before evaluation

typically physics-based, e.g. total composition > 100%

formulated as inequality constraints A(x) < ¢, A is computationally
cheap

directly penalize the acquisition function o = 0 when constraints are
violated, i.e. A(x) £ ¢

camatained (X) = (%) hnown (X) (15)
where known(x) is the indicator function
1, Ax) <
hoown(x) = 4 1 2 = (16)
0, Ax)<Lec

can be conveniently ignored to become unknown constraints if the
model is aware of the constraints violation, i.e. returns error

Anh Tran
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Gaussian process / Bayesian optimization

Constraints

Constrained problems: unknown constraints

Problem statement
optimize f(x) where f(x) may or may not exist

unknown constraints:

>
>

can convert known — unknown but not vice versa

form a probabilistic binary classifier to predict the probability mass
function of passing unknown constraint at x, i.e. kNN, AdaBoost,
RandomForest, GP, etc.

penalize the acquisition function based on the predicted feasibility
from GP classifier

unknown alx), with Pr(clf(x) =1

aco:strained(x) - ( ) . ( ( ) ) (17)
0, with Pr(clf(x) = 0)

our approach:

> use another GP to learn when f(x) does not exist
> optimize the conditioned acquisition function
E[aunkrown ()] = (%) Prunknown (clf(x) = 1)

constrained

Anh Tran
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Parallel

Batch parallel on HPC
Might as well be beneficial when
computing resource is insufficient;
examples:
» P =10.95 — SpeedUp =~ 20
times

2 1 P: Proportion
T a-Py+5 siSpeedup

Paralle| Portion

» CFD simulation takes 3 hours to ]
finish with 256 procs — 20
cases/60 hours

» or 60 hours (2.5 days) with 1

proc for 1 case — 256 cases/60 ] 60 hours/1 proc
hours

3 hours/256 procs

Speedup (S)
1

» fixed computational budget: 256
x60 CPU hours L e e i on oz omomonozososonozos s

q
Number of Processors

» observation: parallelizing
optimization can provide more Amdahl's law for parallelization.
observations than parallelizing
the code

|
Anh Tran GP and BO for materials science [31 /159] SIAM UQ 22




GP and BO for materials science
Gaussian process / Bayesian optimization
Parallel

Asynchronous parallel on HPC

Dashboard: worker schedule
w—busy

—idle

10000 15000 20000 25000
Time (seconds)

Batch-sequential parallel

Dashboard: worker schedule and acquisition
- ucB El El - MSE

—idle

. w

o«

Worker ID

Multi-a asynchronous parallel
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Multi-fidelity

Multi-fidelity

Kennedy and O'Hagan Kennedy and O'Hagan 2000: auto-regressive model
based on a first-order auto-regressive relation between model output of
different levels of fidelity.

>
>
>

s-levels of variable-fidelity model y;(x)i—;
y1(x): cheapest, ys(x): most expensive
auto-regressive model:

Ye(x) = pe—1ye—1(x) + d¢(x) (18)

Markov property: assuming that given y;—1(x), we can learn nothing
about y;(x) from any other model output y:—1(x’), for x # x’

Covlye(x), ye1 () lye-1(x)] = 0, Vx #x' (19)

Anh Tran
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Multi-fidelity

Multi-fidelity

» model the lowest fidelity y; as a classical GP
» model the discrepancies §;'s as GPs
» for two levels of fidelity: M. = cheap, B. = expensive

» covariance vector and covariance matrix

k(x) = (pke(x)  ke(x)), (20)
_ oeK. po2K(Xc,Xs)
B (pJ?Kc(XSa xc) pQJ?KC(Xsa XS) + Ung(Xﬂ X5)> (21)

Anh Tran GP and BO for materials science [34 / 159] SIAM UQ 22
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Multi-fidelity

Selection of level of fidelity

Question: Fix a sampling location x*, what level of fidelity should be
selected to query?
Compare computational cost vs. benefit:

> 1 <t<s: level of fidelity

» if x* is queried, how much uncertainty is reduced?
» at what cost?
>

our approach: balance computational cost vs. gain (reduction of
uncertainty)

t* = argmin <ct /X UQ(X)dx> , (22)

> promote high-fidelity if the cost is similar: If C|D®)| > C,|DY|
then choose s.

Anh Tran GP and BO for materials science [35 / 159] SIAM UQ 22
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Multi-objective

Multi-objective

Let:
> x={x}L, € X CR? be input in d-dimensional space,

> y ={y};_, as s outputs.
argmax(fi(x), -, fs(x)) (23)
XEX

subjected to ¢(x) < 0.
Pareto definition: x; is said to dominate x2, denoted as x; < x2, if and only if
V1 < j <'s, such that yj(x1) < yj(x2), and 31 < j <s, such that y;(x1) < y;(x2).
Scalarization: multi-objective — single-objective

1. weighted Tchebycheff with £oo: y = maxi<j<s wi(yi(x) — i),

2. weighted sum with £1: y = >7 | wyi(x),

3. augmented Tchebycheff with £; 4+ (:

y =maxi<i<s wi(yi(x) — ) + p 207y wiyi(x),

z;" denotes the inferred ideal i-th objective value; normalized weights: 0 < w; <1,
ST, wi=1;0< p <1 positive constant.

Anh Tran GP and BO for materials science [36 / 159] SIAM UQ 22
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Multi-objective

Multi-objective

Hypervolume approach:
» hypervolume indicator, aka S-metric
P strictly monotonic

/2 log n)

> d = 3: lower and upper bounds O(nlog n) Beume et al. 2009

» complexity O(nlogn+ n

» and any other sorts of approximation ...
A near-optimal approach:
» Low-dimensional output (d < 3): hypervolume estimator

» High-dimensional output (d > 3): Tchebycheff decomposition

Anh Tran GP and BO for materials science [37 / 159] SIAM UQ 22




GP and BO for materials science
Gaussian process / Bayesian optimization

Mixed-integer

Mixed-integer

Main idea:

P decompose to a set of continuous and discrete variables
x = (x4, Xc)
P enumerate x4 and build a local GP for each x4

» form a Gaussian mixture prediction with adaptively weighted

average Manhattan distance = |

‘neighborhood
» applicable when |x¢| > |x4|, i.e. not combinatorial

) . Manhattan distance = 0
optimization problems

neighborhood
(self-only neig

v

P Gaussian mixture model predictions for posterior mean and

variance:
Manhattan distance =2
— ¥ neighborhood
- NG (e (e
a= S we (B4 50— (2 122
*eB(0) esanenud
bias TEO[;r]e:C;'&I; term Neighborhood B(£) of a local GP ¢
with x4 = (3, 2), defined by
~2 2 2
o = Z Wex T (g*) (25) thresholding a similarity measure of
e*eB(¢L)

discrete tuples
> weighted average estimation, weights depends on (1) cluster
distances, (2) original cluster predictions

P theoretical bounds for weighted average prediction

» asymptotic behavior when n — oo

Anh Tran GP and BO for materials science [38 / 159] SIAM UQ 22
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Mixed-integer

Mixed-integer

A special case: Wasserstein distance (Earth mover's distance). Assume the
query point x = (X4,Xc), where x4 corresponds to ¢-th cluster.

* -1
wer o [of + Wa (NG, 0t NGO atp))]| - (26)
* = |12 2
Mé(A“yM)v”@ﬂ%Aﬂywxoéﬂ)::Hy“)_yw) +HVU@Y‘VA%;7

*)
(27)
Weighted linear average prediction

The largest weight is associated with the ¢-th cluster.

Asymptotic analysis n — oo
limp— oo W) — 00, as oy — 0 and Wa(-,+) = 0.

Interpretation: If data is abundant, then the proposed approach converge
asymptotically to a single local GP prediction.

| |
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Big Data

Sparse variational GP

Low-rank approximation for Ky ¢
Low-rank approximation K ~ K =KnmK L Kmxn (cf. Section 8.1

mXxXm
Rasmussen 2006) and scales as O(nm? + m®) instead of O(n®).

For n>> m, this method scales as O(nm?).

Following Quifionero-Candela and Rasmussen 2005; Quifionero-Candela,
Rasmussen, and Williams 2007, Chalupka, Williams, and Murray 2013,
Vanhatalo et al. 2012, 2013.

Cost complexity:

> local GP: O(m?)

> sparse GP: O(nm?)

» classical GP (Cholesky decomposition): O (%ns)
» classical GP (LU decomposition): O (%ng)

> classical GP (QR decomposition): O (5n?)

Anh Tran
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Big Data

Sparse variational GP
Follows Frigola, Chen, and Rasmussen 2014 and Rasmussen’s
corresponding slides. By Bayes' rule,

P(y|f)p(f]0) P(y|f)p(fl0)
p(fly, 8) = PYPY) o (y1g) = PYIVPLIT) 28
0= P = "oy.0) 29)
The idea: approximate the (computationally intractable) p(fly, ) by a
(computationally tractable) parameterized variational g(f). For any q(f),

 pyIDp(E6) a(f) o plylpp() a()
POI) = = (aly.0) q(p & 108PWIO) = log =2 = Flog g -

20)

Apply [ q(f)df to both sides

_ P(y|f)p(fl0) q(f)
log p(y|0) _/q(f) log Tdf+/q(f) log @y, 0) df  (30)

Evidence Lower BOund KL(q(f)||p(fly,0))

marginal likelihood

Turn our attention to maximizing the variational ELBO (or equivalently
minimizing the KL divergence) instead of maximizing the log marginal
likelihood.
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Gaussian process / Bayesian optimization

High-dimensional

High-dimensional: Active subspace method
Formulations are derived by Constantine 2015; Constantine, Dow, and
Wang 2014
Ideas:
» approximate high-dimensional function f : X ¢ R® - R
» perform SVD on covariance of gradient vector with descending
eigenvalues

E[Vf(x)VFf(x)'] = WDiag[A1, ..., Ap]W " (31)

Diag[A1, ..., Ap] = Diag[A1, ..., Aa] @D Diag[Aas1,..., Ao], W =[W1 Wy
(32)
> rotate the inputs W; € RP*94 W, ¢ RP*(P=9)
f(x) = F(WW'x) = f(W,W{ x + WoW; x) = f(W1y + Waz) (33)
» if z invariant in an inactive subspace A\g+1 = - = Ap =0, then
f(x) = f(W1y): reduce from D to d
» work great if gradients are readily available

» but what if gradients are not available? estimation by GP? constrained
manifold optimization for W] besides the original optimization?

|
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Gaussian process / Bayesian optimization

High-dimensional

High-dimensional: Gaussian random projection

Mostly follow Wang et al. 2013, 2016. Main idea:

> choose (wisely) and optimize over Z C R

» embed and project onto high-dimensional space as x < px(Az)

> A e RP*9: tall-and-skinny random matrix with standard normal
element

Eat

%

Important

Unimportant X

Photo courtesy of Wang et al ibid. Optimizing a 2d
function (with 1d active subspace) via random

embedding.

REMBO algorithm ibid. with deviation from BO
highlighted.
1: generate a random matrix

A€ RPX a5 v N (0,1)

2: choose the bounded region set Z C RY
3: Dy« @

4: fori=1,2,--- do

5:

locate next sampling point

741 < argmax,c z a(z) € RY
query

Dit1 + D U{zit1, f(px (Azi11))}
update GP

: end for

oN 9
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GP and BO for materials science

Gaussian process / Bayesian optimization

High-dimensional

High-dimensional: Gaussian random projection

d cols 1

—-

' Lemma (Johnson-Lindenstrauss)
” Given n points {x;}]_;, each of which is in RP,

z € R?

A ~ MNpyg(0,1,1), and let z € R? defined as

z=A x. Then, ifd > 9210gg , for some
e —¢€

RS (O, %), then with probability at least %, all

gg 2 A pairwise distances are preserved, i.e. for all i, j, we
w = 2 have
" Q
(A =o)lx—x 15 <l =715 < L+ e)llxi —x; 113
(34)
Compared to active subspace
method: also linear and does not
- require gradient and the rotation
matrix W',
A . _— —A .
random embedding or a random projection x z There are alternative approaches, e.g.
is built as a corollary from the Johnson-Lindenstrauss additive GP.

lemma, where A is a random normal matrix.
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Gaussian process / Bayesian optimization

Analysis

Convergence rate analysis

Regret of action x;:

re=|f(x") — f(x¢)] > 0,

where x* = argmax, o f(x).

Aim to minimize the cumulative regret at the horizon T

No-regret in infinite horizon: lim7_oo rr = lim7 00 R—TT =0
— motivation for sublinear bounds of Ry, or more precisely,

O(RT) < O(T)

RT = Zrt.

t<T

(35)

(36)
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Gaussian process / Bayesian optimization

Analysis

Convergence rate analysis

X: = argmax pe—1(x) + [33/20t_1(x) (37)
xe€D

For aycg with Matérn kernel: see Srinivas et al. 2009, 2012; tighter
bounds for UCB in noiseless environment, see De Freitas, Smola, and
Zoghi 2012.

Theorem (O(+/T) Srinivas et al. 2009)
Let § € (0,1), and B: = 2log (%), then

Pr(RT <G TBT'yT) >1-4, (38)

— 8
where C1 = m

| |
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Gaussian process / Bayesian optimization

Analysis

Convergence rate analysis

Proof.
Sketch of proof Srinivas et al. 2009

1. pick 6 € (0,1), set B = 2log <|DJ;7”>, then

Pr(F(x) = pe1(x)] < B 2001 (x)) > 18 (39)

2. bound r; of action x;
re < 268201 (xe) (40)

3. associate information gain with posterior variance
I(yr;fr) = % Zthl log(1 + U_QJ?,I(xt))

_ 8 .
4 O = ey

;
Pr (R%/T <> < BrGl(yrifr) < clﬁmr) >1-46. (41)

t=1

O

| |
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Gaussian process / Bayesian optimization

Analysis

Convergence rate analysis
» aycg with noisy GP: r = O (%)
» aycg noiseless setting, see De Freitas, Smola, and Zoghi 2012:
r=0 (e_ﬁ).

» g, see Bull 2011:

rt =

(42)

Ot "4logt)®), v<1
oV, v>1

» batch parallel with batch size K agucs, see Desautels, Krause, and
Burdick 2014:
log(tK
=0 (C 7gt(K )’YtK) (43)

» batch parallel with batch size K aycs.pe, see Contal et al. 2013

=0 ( 15%) (44

|
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Gaussian process / Bayesian optimization

Connection to deep learning

Connection to deep learning

Pioneered by Neal 1996: 1 hidden

Input T
|g§:r layer with infinite number of nodes,
Hidden ie. m— oo
Output  For every output node y;, 1 < i < k,
layer

@—' y() = b+ S W) (as)

For every hidden node hfl),

C 1<i<m,

h(x) = o (b? +3° W,;)x,-) :
j=1

(46)

Anh Tran GP and BO for materials science [49 / 159] SIAM UQ 22




e
GP and BO for materials science

Gaussian process / Bayesian optimization

Connection to deep learning

Connection to deep learning

Weights and bias are i.i.d = y; is Gaussian (by Central Limit Theorem)

K(x) = Eli(on(x)]
o3 + o 1 (), b ()] (47)
= o +02C(x,x")

Single-layer, infinite width: y;, y;: joint Gaussian, zero covariance, and
independent

yi ~ GP(u,K) (48)

For ¢(x) = max(0, x), i.e. ReLU, the equivalent kernel is arccosine (cf.
Cho and Saul 2009).

|
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Gaussian process / Bayesian optimization

Connection to deep learning

Connection to deep learning
More general results available from Lee et al. 2018 (cf. Appendix C), as
my — 0o, -, my — 0o, i.e. multi-layer, infinite width, NN is still equivalent

to a GP.
Hidden
Input layers Output
layer layer

At the last layer L,

im  p(h®)x) =GP (h50,(Go (Fo 6))(K)  (49)

m;—00,...,m1 —0o
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GP and BO for materials science
|—ICME applications

Benchmark functions (numerical)

Gaussian process / Bayesian optimization

ICME applications
Benchmark functions (numerical)
Flip-chip BGA package design (FEM)
Heart valve optimization (FEM)
Pump design optimization (CFD)
Inverse problems in process-structure (kinetic Monte Carlo)
Inverse problems in composition-property (DFT + MD)
Inverse problems in structure-property (CPFEM)

Conclusion

| |
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|—ICME applications

Benchmark functions (numerical)

2d three-hump camel

(joint work w/ Yan Wang)

Syntl;etic function: Infeasible three-hump camel function

[
NN
-

Min function value
=
S

Comparison of different BO algorithms: Three-hump camel

EI-LSSVM

EI-SVM

El-AdaBoost
El-RandomForest
EI-kNN

UCB-LSSVM
UCB-SVM
UCB-AdaBoost
UCB-RandomForest

0.75 -+- UCBKNN
0.5 b - pBO-2GP-3B
Il L
0.25 FH-L_HRT
0.00 ¥
- 10 20 30 40 50 60 70 80
005 Iterations
X, axis
Convergence comparison with different classifiers.
2d three-hump camel.
;
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ICME applications

L Benchmark functions (numerical)

Speed reducer design optimization

(1d+6d) (mixed-integer)

(joint work w/ Yan Wang)

Speed reducer design problem

--- mixed-integer BO (2 init samp)

93500 --=- mixed-integer BO (5 init samp)
H . --+- mixed-integer BO (10 init samp)
s 3600 . ~~ mixed-integer BO (20 init samp)
5 ; —— genetic algorithm: (50,3)
B I - genetic algorithm: (150,10)
g 3400 genetic algorithm: (1500,10)
2
© 3200
L
)
o

3000

200 1000

400 600 800
Number of functional evaluations

s\

Comparison against GA.
Speed reducer design
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ICME applications

Benchmark functions (numerical)

High-dimensional discrete sphere function

(5d+50d) (mixed-integer)

(joint work w/ Yan Wang)

~e- mixed-integer BO (2 init samp)
mixed-integer BO (5 init samp)
~#- mixed-integer BO (10 init samp)

mixed-integer BO (20 init samp)

.
.4’} T genetic algorithm: (10,1)
— genetic algorithm: (50,3)
f(x(d) X(C)) = —:= genetic algorithm: (150,10)
? -+ genetic algorithm: (1500,10)
FOXL, s Xny Xpgp 1,0 5 Xm) =

IT7—, Ixil (E?=n+1 xﬁ) where

1 < x; <2(1 <i< n)aren integer
variables and .
—=5.12 < x; <5.12(n+1 < j < m) are
m — n continuous variables.

Objective function

200 a0 600 800
Number of functional evaluations

Comparison against GA.
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ICME applications
Benchmark functions (numerical)

Multi-objective: 2 objectives

(joint work w/ Mike Eldred)

Benchmark function: ZDT3

Benchmark function: ZDT1
- true Pareto

. Pareto

- true Pareto
. Pareto

Objective 2

Objective 2

a $o Ry el w 3
‘Objective 1

Objective 1

ZDT1. ZDT3.
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ICME applications

Benchmark functions (numerical)

Multi-objective: 3 objectives

(joint work w/ Mike Eldred)

. - true Pareto - true Pareto
Benchmark function: DTLZ2 | g Benchmark function: OTLZS | | pyreyy
po 2o
bg og
g 12
'8 i3
ba 2
| F
o o
10
b8
&
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ICME applications

L Benchmark functions (numerical)

Multi-fidelity: borehole8d

(joint work w/ Scott McCann, Tim Wildey)

2mx3 (x4 — Xs)

fH (X) = ) 1 D x x )
0g( X2 /X
g(xe/ 1)( T TogGa/m)dxs Xs)
5X3 (X4 — Xe)
fi(x) = : . — oy
_eX7X3
Og(XQ/Xl) < 5+ log(xa /x1)xExs + XS)
borehole8d
—e— El
100 - UCB
-~ Pl
80
2
£ 60
&,
K
40
20
50 100 150 200 250 300
iteration

Borehole function (8d) - 2 levels of fidelity.

(50)

(51)
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ICME applications

Benchmark functions (numerical)

Asynchronous parallel
(joint work w/ Mike Eldred)
1 4 3 2
f(x) = e l.l—ga;exp —]Z;Aij()g—Pij) , (52)

Hart4 function, t ~ U[30,900] on X = [0, 1]%.
benchmark function = egg

-~ aphBO-2GP-3B
200 A~ apBO-2GP-3B-El
-¥- apBO-2GP-3B-PI
-4 apBO-2GP-3B-UCB
0 —#— pBO-2GP-3B-El
| -4 pBO-2GP-3B-PI
0 -200 4 pBO-2GP-3B-UCB
> % parallelMC
©
2
5-400
-600
-800
0 2000 4000 6000 8000 10000

time (seconds)

T O S T TS D ey e O e T euTo:
Anh Tran GP and BO for materials science [58 / 159] SIAM UQ 22




GP and BO for materials science
ICME applications

Benchmark functions (numerical)

Sparse GP for Big Data

(joint work w/ Bart G van Bloemen Waanders)

Benchmark FIC sparse GP: Training time

—e— n=10!
-& n=10°
—- n=10°
i 103] =< n=10* /4////‘*7‘
> Intel Xeon Platinum 8160 CPU @ 2.10GHz — n=fo5|
» 24 cores, 48 threads 4 n=10°
> RHEL 7.1 (Maipo) . V4
— 102
» 180 GB of memory g
2 =
» sphere function y = (Z‘?:l x,-) s 2
=
X =[-1,1]3 & 10t
P training data points:
ne {10',10%,...,10%}
» number of inducing points: o
m € {10, 50, 100, . .., 300} 10
P GPstuff with SuitSparse toolbox on MATLAB
» m =300, n = 10 takes ~48 minutes

0 50 100 150 200 250 300
Number of inducing points

Benchmark of training time.
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ICME applications

Benchmark functions (numerical)

Sparse GP for Big Data

(joint work w/ Bart G van Bloemen Waanders)

Benchmark FIC sparse GP: Testing time

Benchmark FIC sparse GP: Accuracy

—e— n=10' 3
—& n=10% / 10
101} ¢ n=10° T
—< n=10*
—¥ n=10° .
—&— n=10° 10
2 10°
qE) w 1073
i 2
2 z
g
= 1074
107t
1073
1072
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of inducing points Number of inducing points
Benchmark of testing time. Benchmark of accuracy.
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ICME applications
Benchmark functions (numerical)

High-dimensional (with low effective dimensionality): Gaussian random
projection

(joint work w/ Bart G van Bloemen Waanders)

The modified ZDT1 function, which is defined on
[—1,1]P,is

) =g (1 - ,/ﬁ> , (53) -
g 10

where g =149 (E,_2 D 1)2.

Scalable®-BO: D = 10%,d = 10: Cnvg plot of Zdtl

Objective
g

» (non-unique) global minimizer 106

* =11,0,...,0] -

*)
» f2 (X ) - 0 0 50 100 150 200 250
4 Number of functional evaluations

> D=10
> d=10 Convergence plot with D = 10, 000, d = 10.
> de =2
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ICME applications

Flip-chip BGA package design (FEM)

Flip-chip BGA package design (FEM)

(joint work w/ Scott McCann (Xilinx))

FE model geometry

Solder Joints
O 0 0000000000000 0 0

» 25D FE on (ANSYS) APDL: half symmetry to reduce comp.

evaluate component warpage at 20° C and 200° C, and the strain energy density to predict the fatigue
life of the solder joints during thermal cycling

P two levels of fidelity: varies mesh density parameter

average comp. time: 0.4 CPU hr for low-fidelity, ~ 1 CPU hr for high-fidelity

Anh Tran
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L Flip-chip BGA package design (FEM)

Flip-chip BGA package design (FEM)

(joint work w/ Scott McCann (Xilinx))

Conv. plot at high-fidelity

sBF-BO-2CoGP: Convergence plot by iteration

FE model

N
>

N
N

[y
©

Objective function value
N
=)

=
o

0 10 20 30 40 50
Iteration
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Heart valve optimization (FEM)

Heart valve optimization (FEM)

(joint work w/ Yan Wang, Wei Sun)

(A) Parameterization of 2D leaflet geometry; (B) 3D (A) 3D suturing line; (B) 2D attachment edge; (C)
attachment edge shape; (C) Template leaflet mesh 2D-to-3D transformation; (D) Node and element
and nodes transformation. mid-leaflet sets.
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Heart valve optimization (FEM)

Heart valve optimization (FEM)

s, Max. Principal
SHEG, (fraction = -1.0)
(Avg: 75%)

11s50er01
+1912e400

242e+01
027e+00

Comparison of nominal (left) and optimized (right) designs for bovine (top) and porcine (bottom) leaflet

materials under diastolic pressurization.
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Pump design optimization (CFD)

Impeller design optimization using CFD

(joint work w/ GIW Industries)

lot of 33d impeller CFD simulation

BO-2GP-3B: Convergence
2.00; 3

=
~
ul
-

=

u

=}
L]

1.25 @ Bacquisition
+
. E = - = L B Bexplore
. °d ¢ ‘ @ Bexploreclassif
-
¢ X infeasible
0.75 o "
- initial sampling
o =

Average wear rate (um/hr)
o o
w o
o o

o
N
w

‘-
QL-
0 24

0.00 XO0CRCHIS X WK X MK XOKM00K XK XK XX XomK XXM XX
0 250 500 750 1000 1250 1500 1750
Number of functional evaluations

Design evolution of 33d slurry pump impeller using a solid-liquid multi-phase CFD
package.
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Pump design optimization (CFD)

Casing design optimization using CFD

(joint work w/ GIW Industries)

aphBO-2GP-3B: Convergence plot of cas3d

. ° @ feasible
X infeasible
Py <
150 e o o T o . .
° L]
° .
125 P 0 e o 0 o
o L . o® .
> 3 L] ° °
£100 . .° 5 L o 1N
Q9 ° o o0
Qo L] LN )
o7 - -.o'.-&c % q000 9 o0
50
25
0 L - * * * *

0 50 200

100 150
Number of functional evaluations

Design evolution of 14d slurry pump casing using a solid-liquid multi-phase CFD
package.
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|—ICME applications

Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

Reference

Anh Tran et al. (2020a). “An active-learning high-throughput
microstructure calibration framework for process-structure linkage in
materials informatics”. In: Acta Materialia 194, pp. 80-92

> process: x + §,8 ~ U[J, §] — controllable within a tolerance §

P (micro)structure — spatio-temporal noisy, questionable microstructure representations
(physics-based vs. data-driven), image (i.e. high-dimensional), limited/scarce data

> property: y = f(x) + &, ~ N(0,02) — noisy observations

Anh Tran GP and BO for materials science [68 / 159] SIAM UQ 22




R
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[ ICME applications

Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

A formal problem statement:

> there exists a forward tool f(-) to predict microstructure, u = f(x)
(represented as images)

> given a target u™ (represented as images)
> task: find x* such that f(x*) = u* = u

~

~ is defined in the sense of statistical equivalence for microstructures, pp
is the p.d.f. of statistical microstructure descriptors D, i.e.

pp: Q= L' pp(u”) = pp(u) (54)

d(pD(u*),pD(u)) < TOL (55)

Hint: quantitatively differentiate microstructures using statistical
microstructure descriptors

|
Anh Tran GP and BO for materials science [69 / 159] SIAM UQ 22




GP and BO for materials science
LICME applications

L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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LICME applications

L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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LICME applications

L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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LICME applications

L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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LICME applications

L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

Anh Tran GP and BO for materials science [80 / 159] SIAM UQ 22



GP and BO for materials science
LICME applications

L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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L Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure

(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)
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Inverse problems in process-structure (kinetic Monte Carlo)

Inverse problems in process-structure
(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

initialize by random sampling

No
ter < maxiter’

> optimalsolution ]

high-throughput: query c parallel manner

query by running

simulation
[ candidate microstructure target microstructure J
o, (d; |targetMs) s (dalcandidateMs) o statistieal - microstructure
augment dataset o ) descriptors (d,}i,, represented
N o (ltargoths) 355 probabilty density functions
po,(dscandidateMs) 3] |Pos (sltargoths)
dy dz

¥ _evntuteasce funcions
statistical metrics to measure _differences
i)y between  microstructure  descriptors,
which are considered as objective functions.
= 81 (pp, (0 targetMs). pp, (¢ [candidateMs))

2= 2 (po, (daltargetMs). po, (do|candidateMs) )

TTT

An asynchronous parallel Bayesian optimization workflow for inverse problems in process-structure linkage.
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Collecting local 4 global statistical microstructure
descriptors given a microstructure.
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(joint work w/ Laura Swiler, John Mitchell, Tim Wildey, Theron Rodgers)

microstructure calibration: convergence plot
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Reverse engineering an AM specimen through kinetic Monte Carlo
(Sandia/SPPARKS).
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Inverse problems in composition-property (DFT + MD)

Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

Reference

Active learning from chemical composition space to material property
Anh Tran et al. (2020b). “Multi-fidelity machine-learning with uncertainty
quantification and Bayesian optimization for materials design: Application
to ternary random alloys"™. In: The Journal of Chemical Physics 153 (7),
p. 074705.

Main ideas:

» Forward models:
»  MD-MLIAP: low-fidelity (low accuracy, low cost)

> DFT: high-fidelity (high accuracy, high cost)
» Exploit correlation between low- and high-fidelity models
» Input: chemical composition
» Output/Qol: bulk modulus By

» What chemical composition would optimize the Qol?

| |
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Inverse problems in composition-property
(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

Ab-initio:

02- *
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» DFT implemented in Quantum
ESPRESSO

» high cost + high accuracy
— high-fidelity
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Birch-Murnaghan polynomials fOI’ BO: EOS calculations for 6 configs. red line: DFT; blue
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Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

R? = 0.7122: not exactly the same

Low-fidelity: MD with SNAP potential.

160
150
140
130 &
1209
110
100

Tio 27 36 . 90
Al atoms

Multi-fidelity GP = high-fidelity: DFT.
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Inverse problems in composition-property

(joint work w/ Julien Tranchida, Aidan Thompson, Tim Wildey)

MFGP prediction at 0.0K
Nb
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| high-fidelity i
best-so-far high-fidelity

Ti Al

Al atoms
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Inverse problems in structure-property

(joint work w/ Tim Wildey)

Reference

Anh Tran and Tim Wildey (2020). “Solving stochastic inverse problems for
property-structure linkages using data-consistent inversion and machine
learning”. In: JOM 73, pp. 72-89

Main ideas:

P require some statistical treatment for stochastic microstructure, due to
the inherent randomness

» parameterize deterministic \ as microstructure features, e.g. average
grain size, Weibull parameters, etc.

sample N microstructure RVE (DREAM.3D)
run crystal plasticity over RVE ensemble (DAMASK)

collect Q(\) as quantities of interest

vvyVvyy

approximate Q(-) by machine learning, e.g. heteroscedastic GP

| |
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(joint work w/ Tim Wildey)

microstructure ..., ..machine learning . proper‘ues

AeRk .................................... eRm

microstructure(generation spatially|average

DAMASK MTEX

DREAM.3D ParaView

crystal plasticity

DAMASK
PETSc

... finite element model

Microstructure-homogenized properties map over an ensemble of microstructures with a heteroscedastic GP.

|
Anh Tran GP and BO for materials science [136 / 159] SIAM UQ 22




e
GP and BO for materials science

[ ICME applications

Inverse problems in structure-property (CPFEM)
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(joint work w/ Tim Wildey)

LTI
JOTTLLL .,
K .,

known .. unknown
~Stochastic forward*,

microstructure

m(A); L Q)

o
. ..

unknown " Stochastic i inverse, " known

‘™
.~ .
. .
DL

Stochastic forward vs. stochastic inverse problems in structure-property context.

» stochastic forward: given uncertain input A — uncertain output Q(\)

» stochastic inverse: given uncertain output Q(A) — uncertain input A

Anh Tran
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Inverse problems in structure-property

(joint work w/ Tim Wildey)
Ensemble average yield stress via Monte Comparison: GP (ML/UQ) and the

Carlo with different grain sizes Hall-Petch (ordinary least square)

Effect of grain size on ensemble average oy S50 Effect of grain size on ensemble average oy
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I

Inverse problems in structure-property

(joint work w/ Tim Wildey)

Initial density and updated density: Comparison: Distributions of materials
normal case properties
Inverse density of up s.t. oy ~ N(540.00, 10.00) u\Iggification between target and push-forward posterior
16 —— updated: my"(A) -=- target: n%
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Conclusion

Takeaway message

Gaussian process is a versatile machine learning, uncertainty quantification,
and optimization toolbox for ICME applications.
This talk: two parts

» theoretical / computational aspects of Gaussian process and Bayesian
optimization

>
>
>
>

>

constrained (known + unknown)
batch-sequential and asynchronous parallel
multi-objective

multi-fidelity

Big Data, high-dimensional

» |ICME applications

>
>
>

>

density functional theory: Quantum ESPRESSO
molecular dynamics: LAMMPS
kinetic Monte Carlo: SPPARKS

crystal plasticity finite element: DREAM.3D + DAMASK

Anh Tran
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Thank you for your time and listening.
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Sparse variational GP
> p(-): true pdf
» qg(-): approximate pdf
Assume the fully independent training conditional
(FITC) Quifionero-Candela and Rasmussen 2005; Quifionero-Candela,
Rasmussen, and Williams 2007, augment the joint model p(f, f) as

plE..f) = / p(L.. £, u)du = / p(E., fu) p(u)du, (57)

w: inducing variables at m locations X,. The training and testing
conditionals are

p(flu) = N'(m + KeoKo o (u — m), Kee— Qgy), (58)
and
p(fiu) = N(m + K. oKy s (u —m), K., —Q..), (59)
where
Qa,b = Ka,uK;iKu,b- (60)

The likelihood and inducing priors remain the same, i.e.
P(¥[) = N'(£,0T), and p(u) = A'(m, Kyu).
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Sparse variational GP

FITC training prior based on the inducing priors is modified as
q(flw) = [ [ p(filw) = V'(m + KruKyu (0 — m), Diag[Kee — Qi) (61)
i=1

and keeping the testing prior the same
q(f.lu) = p(fu|n) = N(m + K. .Kyu(u—m), K.. —Q..),  (62)

the effective prior under the FITC assumption is

att.£) = (|m] | Fr = D= Kad Qe ) (o)

which implies the testing distribution as

gEly) = N(m+Que(Qrr+A)""(y —m), Kiw — Que(Qrr + A) 7' Qr)
= N(m + K*,uEKu,fA_l(y — m), K*,* — Q*,* + K*,uEKu,*) ’
(64)

where ¥ = [Kuu + KutA ™ 'Kiy] ' and A = Diag[Krr — Qe + 01].
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Sparse variational GP

The marginal likelihood conditioned on the inducing inputs is therefore

aly/Xa) / / (v1)g(fu)p(uX,)dudf = / p(yIDa(EX,)dE,  (65)

which implies the log marginal likelihood as

log q(y/X.) = — 2 log(2m) — » 108 Qe+ Al » (y—m) T [Que+ A] ™ (y ~m),
(66)

where A = Diag[K¢r — Qgs] + o°T

Cost complexity: O(nm2) Li, Kwok, and Lii 2010; Williams and Seeger

2001. (Note: do not multiply matrices directly — cf. Section

14.3 Martinsson and Tropp 2020).
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Variational inference

Mostly follow Titsias 2009a; Titsias 2009b and Bonilla, Krauth, and Dezfouli 2019.
Definition of conditionally independent condition:

p(flu,y) = p(flu), (67)
which implies p(f, uly) = p(flu, y)p(uly) =~ q(f,u) = p(flu)q(u), where g(u) is the approximate
variational posterior. Main tool: Jensen's inequality.

logq(v[Xa) = log [ [ p(rIDa(twp(ulXa) x L0D dudf
> [ [aq(u,f)log P(Y\f)qul:)g(ulxu) dudf
I p(tiwq(w) log 2HDIHOPMIN) gugy )
[ { f p(flu) log p(y[Ddf + log 25X | du
= [a( {log G(u,y) + log 20X L gu
= [aq(u) qlog 7(;(“”2(’7“()“'){“) } du := Fy(Xy,u),
logG(u,y) = [ p(flu) log p(ylf)df
= [p(fu) {—% log(2mo?) — 2;2 Tr [ny —oyf! + ffT} } df
= -3 log(2mo?) — 2UizTr [ny —2ya +aal + Qrr — K“-:I (69)
= N@la, o) - S5 Tr[Cov(a)],
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Variational inference

where a = flu, with
Ela] = E[flu] = m + K Ky 4 (u — m) (70)

and
COV[CY] = COV[f|ll] = Kf}f — Qf’f = Kf’f — Kf’uK,:&Ku’f. (71)

Reverse Jensen's inequality to maximize the variational evidence lower
bound Fv(Xy,u) w.r.t. g(u)

G(u, u| Xy
S q(u) {log C.y)p(ulXu) y;(”]f) ‘ )} du
[ 10g G(u, y)p(ulX,)du
log[NV (y|m, 0T + Qg)] — ooz Tr [Kep — KeuKuaKug] =: Fv(Xa)
(72)
Train sparse GP by maximizing Fv(Xy). See also Vanhatalo et al. 2012,
2013, Bauer, Wilk, and Rasmussen 2016; Burt, Rasmussen, and Wilk
2020, Matthews et al. 2016.

Fv(Xu,u)

A
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