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A family of fuel injectors
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Spray A
Diesel (n-dodecane), 

single hole, 
mildly or not cavitating

Spray B
Diesel, multi-hole

Spray H
Diesel (n-heptane), single hole, 

prone to cavitation 

Spray G
Direct gasoline injection, 
multi-hole, flash boiling

Go to the Engine Combustion Network webpage: 
http://www.sandia.gov/ecn/index.php 



Already available on the website
Exp. done, to be published
In progress
Considered

Needle lift motion
Xray, Argonne

Nozzle geometry
Sandia/CAT/Argonne/In
fineum/ESRF

Standard: liq & vap penetration, lift off, AI
Mie/Shadowgraphy/Schlieren
Sandia/IFPEN/CAT/CMT/TUe

Liquid vol. fraction, 
dense spray structure
Radiography, ballistic 
imaging, microscopy
Argonne/Chalmers/
Sandia  

Fuel concentration
Rayleigh
Sandia  

Velocity
PIV, IFPEN

Soot fv, size
LII, TEM 
IFPEN, 
Sandia, Meiji 

Liquid size

Combustion structure
CH2O & OH LIF
IFPEN, TU/e, Sandia 

Temperature

Other species

30+ different measurements by 10+ different institutions
15 years of research performed in 3 years

Spray A effort: a snapshot (April 2014)
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Computational features
Starting point: the Combined Level Set Volume of Fluid (CLSVOF) 
method 

 “A sharp interface method for incompressible two-phase flows” 
Sussman et al. J. Comp. Phys. (2007)

Additional / revamped features:

 An embedded boundary approach for complex geometries

 Directionally split Eulerian-Implicit Lagrangian-Explicit (EI-LE) 
advection

 Compressible formulation of Poisson solver step

 The Moment-of-Fluid (MOF) formulation
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The embedded solid boundary 

 The solid boundary is represented as the zero
level set of a signed distance function, y. 
A “solid face” has yi, j ,k . yi+1, j, k < 0

 y is calculated from a given triangulation (mesh) 
of the body surface: when N solid bodies exist, 
y = min(y 1, y 2, ... y N)

 In case of solid motion, y and wall node normals 
nnode are recalculated at every iteration

 The components of flow velocity at the wall are made consistent with the no
-slip boundary condition through the Poisson equation and the projection 
operator: 
u* = v  so that ∇p . nface = 0 at solid faces

 The values of v are extended into the ghost region by a front-advancing 
procedure where an unmarked cell takes its value from the neighboring 
cells that have already been marked 

A simple level set-based staircase approach

[Arienti and Sussman, IJNMF, 2014]

y < 0
solid 

y > 0,
fluid 
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Contact point on solid surface
 The contact angle qw is prescribed
 The algorithm for curvature reverts to 

calculating the divergence of the interface 
normals near the contact point

 If the cell center falls in the solid region, nf is 
replaced by n(ny,qw)

Effect of wall location for a drop with qw = 60°

qt=0 = 90° qt=0 = 90°

Wall passes through 
the cell centroids

Wall overlaps 
the cell faces
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Extension to compressible flow
 

Asymptotically preserves the incompressible pressure projection in 
the limit of infinite sound speed 
 Evaluate the “advective pressure,” pa and the “advective sound speed” 

(c2)a (Kwatra, Su, Grétarsson, Fedkiw, J. Comput. Phys., 2009) 
 In a cut cell, pa is evaluated from the equation of state for the 

material m∗ that occupies the largest volume fraction in the cell
 
 

 Solve for Pn+1

using mass-weighted interpolation of the cell centered ua 
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[Jemison, Sussman and Arienti, J. Comp. Physics 2013]



Consistency of mass and momentum 
advection (Sussman and Jamison)

 The full Navier–Stokes equations for multimaterial flow are split in (1) advection 
and (2) semi-implicit pressure correction for momentum and energy

 The nonlinear terms in the momentum equations are solved using the 
momentum-conserving approach by Raessi and Pitsch (Annual Research Brief 
2008)

 Velocity is maintained and updated 
at both cell centers and face centers.

 In 1D use backward characteristic tracing

Incoming 
momentum

Face
density
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Faces of 
momentum 
control 
volume 



Equation of state of n-dodecane
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P = 0.1 MPa
P = 20 MPa
P = 140 MPa 

New fit:

NIST data:
P = 0.1 MPa
P = 20 MPa
P = 140 MPa
Supercritical
Supercritical 

Calibrated Tait’s EOS and a new e(r,T) fit to data



Successful pressure discharge following
the needle’s motion 

The needle’s unseating

Computational set-up for moving geometry 

(driven by 
  trajectory file)

(150 MPa)

Measured needle’s 
trajectory: 

The needle’ wobble is 
hardware-dependent
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So far covered 339+35 ms from 
commanded start of injection (SOI)
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Dynamics of opening transient
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Density liquid 
[g/cm3]

Density gas
[g/cm3]

Pressure
[MPa]
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Under-expanded gas jet at the orifice
Example of multiphase supersonic flow
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520 m/s0m/s

t = 337.2 ms t = 334.8 ms t = 332.7 ms 

Axial velocity

Numerical 
Schlieren of 
gas density 

field

droplets

x  = 0 slice

y = 0 
slice

Liquid surface



Z

Y

Evidence of trapped gas at the orifice

• Estimated gas volume ~3 10-7 cm3 = 0.0015 Vsac

• The average density of the gas inside the bubble 
is ~0.2 g/cm3

• The estimated residual gas mass is ~ 6.10-8 g

Transparent 
injector (courtesy 
of Ansgar Heilig, 

Hannover)
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Flow cross-sections at the orifice
Turbulent and asymmetric flow, but over-estimated boundary layer
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TW = 383 K

Liquid phase temperature [K]
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In progress: effect of wall heat 
transfer on fuel temperature

adiabatic TW = 383 K

Liquid phase density [kg/m3]

adiabatic

Observed limited temperature increase from TL,0 = 343 K

TL,exit = 346 K TL,exit = 361 K rL,exit = 716 kg/m3 rL,exit = 720 kg/m3



Jet tip structure
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t = 0.3441 ms t = 0.3525 ms t = 0.3695 ms

 Rapid disintegration of the jet
 No jet tip “mushroom” because of the internal flow dynamics

t = 0.3710 ms



Flow rate and jet penetration
Transient flow rate and momentum flux below measured values,
but reasonable agreement with penetration

Nominal mass flow rate: 
3.5-3.7mg/1.5 ms = 2.3-2.5 g/s

18

sample-averaged 

CMT measurements
Sandia measurements
Model from filtered data
This simulation



Does simulation need to include 
manufacturing defects?
 Needle’s wobble causes pressure distribution asymmetries at 

the orifice exit
 Increasingly relevant with decreasing sac volume

 Perturbed liquid jet tip at the exit
 Different from typical initial condition assumed for Diesel injection
 No mushroom shape

 Misaligned orifice position causes asymmetric flow
 Residual gas bubbles trapped at the orifice entry

 Partial fuel filling in the sac before unseating affects the time 
to apparent injection 
 One of the causes of cycle-to-cycle variability?
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Questions?
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BACKUP
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Dependence of viscosity on pressure
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Conditions and setup
 “Argonne conditions” (cold flow): TL = 343 K; TG = 303 K
 Partially filled sac
 Back and ambient pressure: PL = 150 MPa; PG = 2 MPa
 Adiabatic walls, contact angle qw = 90o 
 No turbulence models, no wall model
 Equation of state for n-dodecane compiled from data by Caudwell et al., 

Int. J. of Thermophysics, 2004;  Khasanshin, et al., Int. J. of Thermophysics, 
2003. Padilla-Victoria et al., Fluid Phase Equilibria 2013.

 Perfect gas EOS
 64x64x576 coarse grid with 3 levels of refinement: 

the finest grid resolution is Dxf = 3.32 mm (~30 grid points across orifice)
adaptive stable time step Dt ~ 2 ns

 From 70 M to 210 M cells
 Run on Sandia’s redsky (from 64 to 168 dual socket/quad core nodes)
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Second sweep: forward-tracing
Lagrangian Explicit 

Interface reconstruction

First sweep: back-tracing
Eulerian Implicit

2D/3D: directionally split advection
Eulerian-Implicit/Lagrangian-Explicit (EI-LE)

Departure regions
Material m

WD

WT

(in alternate sweeps)
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[Jemison, Sussman and Arienti, J. Comp. Physics 2013]



A box-structured data hierarchy
Adaptive mesh refinement and parallel structure managed by Boxlib
https://ccse.lbl.gov/BoxLib/

Example: 
3 levels over 
256x128x128 
base

Proper nesting 
(no more than one 

level change at a 
coarse/fine border)

• AMR enables compact and 
efficient distribution of 
resources 

• Data distribution and 
communication overhead limit 
scalability

[Li and 
Soteriou, 
SciDAC 
2011]

co
st
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]

number of cores 5000

Example of strong scaling test
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• Start of injection (SOI) from half-filled sac: t = 0.339 ms 
• Adiabatic expansion of the liquid near the exit

Pressure, density and temperature distribution 
of liquid fuel



520 m/s

0m/s

t = 339.0 ms 

t = 336.2 ms t = 334.8 ms t = 337.2 ms t = 332.7 ms 

t = 338.6 ms 

under-expanded 
jet

Axial velocity – opening transient 

trapped gas

t = 339.7 ms 
Axial velocity



Air

Fuel
inlet

Fuel
exit

Expansion tube

x = 9.5
x = 10.5

x = 13.5
x = 16.5 

Validation: six-hole 20x Bosch Diesel injector
Positive match within the limits of under-resolved turbulence

[Arcoumanis et al., SAE Technical 
Series, 980911, 1998]

average axial velocity 
r.m.s. axial velocity 
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Six-hole 20x Bosch Diesel injector

RANS velocity flow field from 
Arcoumanis et al. (1998)

Instantaneous flow field 
from current simulation



v
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BOSCH
f = 90 mm

 

Spray A: a second-generation Bosch common-rail injector
(5 nominally identically devices donated to ECN) 

#210678

v

Optical microscopy SEM

Orifice exit: holes are 
elliptical at the outlet, 
not round (2-7 μm)
 Phase contrast imaging of the orifice:

the orifice is misaligned w.r.t. the 
injector and has irregular taper

Does simulation need to include 
manufacturing defects?


