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Overview

 Computational tools allow high frequency (>1 Hz) seismic simulation; however,
modeling uncertainties limits the accuracy of these results.

 How would refining simulations to higher frequencies increase Bayesian seismic
monitoring capabilities e.g. improving inference of event parameters with
uncertainty?

Latitude, Longitude, Depth, Origin Time, Source Time Function, and Moment Tensor

* Target Contribution:

1) Outline how to use the Bayesian experimental design to quantify the effect on simulation
frequency on waveform-based seismic monitoring.

2) Apply this method to simple models constructed to explore the effect of frequency
content on a simulated inference problem for local monitoring.

3) Identify future research directions.



The Bayesian Approach
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Data: D Likelihood: p (D | 6)

Physics Model
Sensor Model
Uncertainty Model

near event larger distance

3 3

Bayes’ Theorem:
_p(D]8)p(9)
p(0|D)= (D)

Knowledge about where
events are likely to occur

Posterior: p (6 | D)

Updated knowledge about
where a specific event occurred




Quantifying Information Gain

Prior

Bayesian Inference:

p(D[0)p(6)
0| D) =
Kullback-Leibler (KL) Divergence

measures the information due to
inference:

KL[p(0|D) |l p(0)

— /p (9 ’ D) log p (9 | D) 40 Prior » Post1 0.5 Bits
p (9) Prior - Post 2 1 Bit
Prior > Post3 1 Bit




Quantiftying Information Gain

Expected Information Gain (EIG) from an experiment (S):
Z(S)=EKL[p(®[D)|[p(®O)] [D~p(D|S)]

_ r(®]D,S)
= [p@15) [p D505 2

d0dD

\—'—l

Distribution of hypothetical data KL Divergence to measure
p(D|S)= [p(D]0,8)p(0)do’ information gain




Quantiftying Information Gain

Distribution of B , , ’
hypothetical data p(D|S) = fp('D 1 0",8)p(0)do

e . Source parameters in the full-waveform simulations e.g. origin time,
* latitude, longitude, depth, magnitude, source time function

S - Simulation frequency fidelity modeled as a low pass filter

D: Simulated waveform plus additive background noise after filtering
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Evaluation Algorithm Outline

1)
2)
3)

4)

5)

Create a representative set of seismic sources with different
locations and source properties

Simulate high-frequency waveforms for each of these sources
and add background noise from a known noise model

For each waveform apply a set of low pass filters with different
cutoff frequencies

For each representative event and filtered waveform solve the
Bayesian inference problem to find the posterior distribution on
the event parameters and compute the information gain

Average the information gain over all events for each of the
filters to capture the effect of frequency content on seismic
monitoring.
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Bayesian Problem Setup ) &

Model Parameters Simulated Waveforms

* Regional domain £2°in latitude * AXiSEM/Instaseis simulations with
and longitude, 40km in depth an AK135 earth model

* Exponentially distributed log10 * Sample rate 3.95 Hz

moment magnitude factor
between -2 to 2 and isotropic
moment tensor

* Additive white background noise
* Low pass filtered using sinc filter
* Source time function width 0 to 5

seconds
* Origin time 0 to 152 seconds




lllustration of filtered waveforms
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NESUILS: InTormation gain Tor each representative
event for the five filters vs the true signal

Background
noise level
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Results: Expected information gain for different cutoff [ .
frequencies at different background noise levels
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Conclusion

Discussion

* Using the framework of Bayesian experimental design we can quantify the utility
of frequency content in seismic simulation for seismic monitoring.

* Under the assumptions of an AK135 earth model and white background noise
process, we observe limited contribution of frequency information above 0.5 Hz.

Future Directions
* Extend this analysis to frequencies up to 10Hz.

* Leverage higher fidelity simulation codes and choose a representative earth
model with more complexity than AK135.

* We made simple assumptions about the background and source mechanism to
facilitate computation, relaxing the assumptions and using more realistic models
may influence these results.




Backup: Mathematica Model of Likelihood — [@:.

Likelihood model in the frequency domain:
* Let w, be the Discrete Fourier Transform (F) of the predicted waveform at frequency j for an
event characterized by (Lat-Lon L, Depth z, Magnitude m, Origin Time t,, and STF width 4)

wj (L, z,m,to,\) = Fjw (L, z,m,t5,A) 1 [s; < f]

 Then the likelihood of the observed Discrete Fourier Transform (¢) up to frequency f given the
predicted waveform is

p (él . -gnf | £’a zZ,m,t,, /\) =P (701 = Real [51 — W1 (ﬁ, zZ,m,t,, )\)D X

f
[ 7 (v0; = Real [§; — w; (£, 2,m, to, A)]) p (715 = Imag [§; — w; (£, 2, m, o, A)])
=2

2 .
=2...
« Where )’J n

n
o1 NN(OanO'Q),j =1 Y0; NN(0,§J
ZO‘ j=2...n

711 =0,7=1 'ylij(O, 2)




