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MoS, is a Versatile Lubricant

*Dry lubricant
 Superlubric (u < 0.01) in dry environments
» Coaster brakes, CV joints, ski wax, bullets...
« Satellites, aircraft engines
« Self-lubricating composites with polymers

*Other uses:
 Catalysis (desulfurization, electrolysis of water)
* Memristor/memcapacitors
* Flexible circuits




How Does it Work?

molybdenum disulphide Run-In Processes
p =002 - 0.06 (inert @ 1N)
p=015-0.25 (humid air @ 1N) Frn
—
transfer 1) Transfer Film Formation
film
2) Shear-induced basal planes parallel
crystallite re-orientation i \
(A) Depiction of the layered structure of MoS5, lamellae stacked upon one

another. (B) Hexagonal stack lattice structure of MoS, with atomic spacing
and sequencing.

oriented surface layer (_ randomiyoriented
of 002 basal planes of MoS> nanocrystalline MoS,
3-10 nm .
sliding surface
- g L

Deposited film is made of many
small randomly oriented crystallites
of molybdenum disulphide.

*Hexagonal structure, form thin, weakly bound lamella

°|ssues: run-in and oxidation




s 1 Environment (oxygen and water) affect friction

atomic oxygen
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*
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> space (AO - fast)
o air at high temps (O, — fast)
o Air at room temp (H,O — slow)
- Water enhances static and kinetic friction

> From environment
> From inside the film
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friction coefficient, u

Start with pure MoS, -- Temperature Dependence
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*non-Arrhenius behavior

80

60

40

20

I\II|IIII|II|IlllllllllllIIII|IIII|I\II|I]\I|III\

‘IIII|IIII|I\II|I\\I|III\

o

*Singer (1990) showed contact is purely elastic

cu=SyP+a
* S ~ 25 MPa at 300K
* Implies sheets sliding on sheets

*Use simulations to understand the shape

temperature, 7' (K)
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Molecular Dynamics Simulations

top layer, 1 km/s ——

rigid layer
mobile layer

nano-platelets

mobile layer
rigid layer

stoichiometric nanoplatelet

*Sandwich 64 nanoplatelets
* Mobile lamella on top & bottom
* Fixed lamella (rigid layer) to control load and speed

*ReaxFF: Vasenkov, et al., J. Appl. Phys. 2012
 Slow technique with (reasonably) accurate chemistry
* Lots of simulations => small & fast.




s | Fundamental Behavior: Shear Strength

80

(o))
o

shear strength, S (MPa)
N S
(@) (@)

O experiments 1
® simulations
1 @ Dunckleetal., 2011

*All shear strengths collapse!

*\What causes this shape?

temperature, T (K)




9 I Elastic contact => Energy Barriers: Previous work
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Llang et al.,
Phys. Rev. B 2008

Levita et al., Onodera et al.,
J. Phys. Chem. C 2014 J. Phys. Chem. B 2010

Previous work has calculated energetic barriers to
sliding, but only for commensurate contacts




A)
10 I Elastic contact => Energy Barriers: Our worl
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Barriers converge with increasing flake size; make a toy
111 model

100 1,160 Probability & Failure to cross barrier:
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Results of toy model
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Curry, et al., ACS Applied Nano Materials (2018)




131 Friction in Environments

18 9
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Khare and Burris, Tribo. Lett. 2013

*Changes with added oxygen or water match experimental results quite well
(for MD...)




141 |s there chemistry?

_ molecular oxygen 500

600 - |

2 400 g 400

g4 g |
B 1 H

200 200

0- 0

Mo-O 02 Oxygen
H-H water H-O water  waters Mo-0 I oz I H2 I

*Water does not dissociate (no O2 or H2 formed)
*Molecular O shows little dissociation (mostly in O2)
*Atomic oxygen forms little O2

*Not much...

atomic oxygen

oz

Oxygen




15 1 Charge on Oxygens confirms

Count

H,0
Water / Mo-O
/\‘/
—1. .0 |

-0.5 0
Oxygen charge

0o SOZ

Counts

-1.0 -0.5 0
Oxygen Charge

Atomic Oxygen

e

-1.0 -0.5 0
Oxygen Charge

Count

chemistry

Tokarz-Sobieraj et al.
Surf. Sci. 2001

*Oxygen bonded to Mo has partial charge
from -0.48 (Tokarz-Sobieraj et al. Surf.
Sci. 2001) to -0.33 (Yin et al., J. Mol.
Model 2001).

*Oxygen in water has partial charge from
-0.6 to -0.8(Astrand, et al., J. Phys.
Chem. A 1998).

*\Water shows only physisorption
*Atomic oxygen shows chemisorption

*Molecular oxygen shows slight amount of
chemisorption




16 | What happens to the energy barriers?

Commensurate
025 2,900 K

—stoich pura
— fulfy 5 terminated, pure
= =fully 5 terminated, with Oxygen
0.2 s fully S terminated, with Water 2,320k

Ems- L740K
& -
% # - ) = b
0.1 A — o 1,160 K
F o e Ty,

0.05 580 K

D 1
0 1.094 2.188 3.282 4.376 5.47
Angstroms

Not much...

Incommensurate sliding

—fully S terminated, pure
= -fully S terminated, with Oxygen
== fully S terminated, with Water

1.094 2.188 3.282 4.376 5.4
Anestroms

So why does the friction go up?

Rotation Barriers

—fully S terminated, pure
----- fully S terminated, with Oxygen
—--fully s terminated, with water

12

24 36
Rotation (deg)

G0




171 Run-in and re-run-in

- Recipe for success: run film in to steady state... and watch friction increase
upon return

015 0.08 , .
Au~0.035 2hr hold gwel me (s
twice steady state u - 30
c 007+ b -
c _% e 60
S % increasing : %gg
L 01F oh g 0.06 L 8 9 08¢ @QG run-in duration e 600 i
'E, r < gg ! 53 & magnitude ;
3 o 2 oos . e, o
= . [e) (]
[0} @ e, [¢)
o 3] ® ®
g o ° e %0
% 0.05 % 0.04 + ...
e 8§ 8 8¢
2 6 8 8688
S 03® 8 .:‘
All tests run in same wear track
0 1 1 1 1 I L 1 1 1 1 1 N2 Spray MOSZ; 200 mN
0.02 : '
0 50 100 150 200 250 0 50 100 150 200 25C 10 10 1
cycle # cycles

- Increase in initial friction increases with time in between; run-in duration also affected

- Also seen in vacuum




18 1 Pressure Matters too!

torr
I LI I I I | LI LB I I I 1 rrrri I I I ] rFrrria I
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0,04 L| © 22x10"tor (test2) | 10
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- difference between previous steady state and returning initial friction
- Stop time from 2x10-" to 7x10-° torr

- Low and high pressures are different




19 1 Environmental factors change shear strength

Adsorption

- Simple theory: adsorption and
diffusion

- Not a new idea:
o Johnston & Moore 1964
° Pritchard & Midgeley, 1969

- Colbert, Ph.D. thesis 2012 Diffusion
Specimen
0.6+ Temperature (°C) .
o 25 v 50 @ high pressure data (2E-1 to 1E-3 torr)
A 30 60 @ |ow pressure data (1E-6 to TE-9 torr)
t 0,04 -
2
v o
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[1] Pritchard, C. and J.W. Midgley, Wear, 1969. 13(1): p. 39-50.
0.0 0 10 20 30 40 50 60 70 1 10 100 1000 10000 100000 1000000
dwell time

Relative Humidity (%) at Specimen Temperature
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Simple Coverage Model

- simple fractional coverage model

- coverage 0 depends on available sites

-two variables:

° & = rate of arrival
5 = sticking coefficient
c k= ktks, 5= st

dt

0
=k-s(1-6)

] @ high pressure data (2E-1 to 1E-3 torr)
@ |ow pressure data (1E-6 to 7E-9 torr)
0.04 1 —— high pressure BoxChan fit
' -~ low pressure BoxChan fit
o S
. | 9e
u=all——e 't ./}li ________
k o ) .r'
* 0.0 o
0.02 o ¢
!
Q !
e 7
/ !
o /° ¥
g @ /
0.004 ~ I‘jl"'r_i - sl’; °
VT .0 g @ _0 go
1 10 100 1000 10000 100000 100000030

dwell time (s)




21 | Propensity for adsorption/infiltration

Defect free N dopant O dopant

1 S vacancy 25 vac: ngighbors 2 S vac: stacked

S sub Mo

Mo vacancy




22

Adsorption Energies

Water on defect free MoS2 ~ -12 kJ/mol
Sulfur vacancies ~ -22 to -24 kJ/mol

N or O dopants ~ -31 kJ/mol

Defect BE kJ/mol |BE eV/H20
intrinsic -12.1 -0.13
1Svac -23.8 -0.25
2Svac-neigh -22.4 -0.23
2Svac-stack -22.9 -0.24
Movac -21.4 -0.22
Ndopant -31.8 -0.33
Odopant -31.1 -0.32
S-adatom -25.8 -0.27
SsubMo -90.7 -0.94
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What Abo

pure

rf-“-\ll "fﬁ\‘. PN

Intrinsic

1Svac-A

gt Between Sheets?

AT T

AN

sulfur vacancy

1Svac-B 1Svac-C 1Svac-D Odop-A Odop-B Odop-C

oxygen doped

Odop-D

dry 0.0 -0.1

posl 0.1 -0.1 0.0

pos2 0.1 0.0 0.0 0.0

pos3 0.1 0.1 0.0 0.1 %ch ange from
pos4 0.1 -0.1 0.0 0.1

pos5 0.1 0.1 0.0 0.1 defect-free
pos6 0.1 -0.1 0.0 -0.1

pos7 0.1 -0.1 0.0 -0.1

pos8 0.1 -0.1 0.0 0.1

Avg 01 =01 o0 0.0

meV/Mo Intrinsic 1Svac-A 1Svac-B 1Svac-C | 1Svac-D Odop-A | Odop-B | Odop-C | Odop-D
Total energy change 23.0 -0.1 -0.2 0.2 -1.9 13.9 4.6 13.9 7.2
BE of water 13.4 -2.7 -3.1 -2.4 -5.2 7.6 1.6 7.6 3.6
Energy from volume change 9.6 2.6 2.7 2.6 2.6 6.1 3.0 6.2 3.6




24 | Wetting indicates infiltration is unlikely
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Radii of Water on MoS,
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25 | Summary

*MoS2 shows purely elastic contact

*Shear is predominantly due to inter-lamellar interactions

«Simple model predicts temperature dependence

*No chemistry with water, little with molecular O, lots with atomic O
*Environment hinders formation of large sheets

*Run-in and re-run-in strongly affected by water
» Adsorption from vapor (at high and low pressures)
« Diffusion from bulk (low pressure only)
 Baking out helps!
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FRICTIOM COEFFICIENT

Non-Amontonian Behavior

Singer, et al., Appl. Phys. Lett. 1990
0.20

.35

0.10

0.05

0.00

"
F
o

¢ 2

INVERSE HERTZIAN PRESSURE, 1/GPs

*Singer’'s explanation:
*u=_S/P
*Expand S =S§, + aP

‘u=Sy/P+a
*u=S,m (3R/AE)?PL15 + a
*Sy = 25 MPa

*Contact is purely elastic =>
sheets sliding over sheets




27 | Molecular Dynamics Simulations

rl"“rl* il e i
b of o ot ot ol o s et teded

=] = o) ol w) =

% L
&’
e 4 r. ‘
anan i &
gy g g g I-""l ’i » ;{f )
l‘-‘.-..-..- i | -'- -’ .pl.l _'_. ;- 3 Taee
=8 = n=5 n=4
HD:.SE Muz S-(_ Mo :_SI__ Ma :52_.

Lauritsen et al., Nature Nanotech. 2007
«Start with nanoplatelets

*Defect free platelets are non-stoichiometric




28 | Molecular Dynamics Simulations

80 T T T T T
¢ T=75K
= —— mu=0.14
£60 A T=150K
o —— mu=0.11
5 m T=225K
L 40 —— mu =0.090
5 ® T=300K
:-E, —— mu = 0.082
= 20
1 1

| |
300 400

Normal Force (nN)

|
200

*Six loads at each temperature
*u = dF,/dF, gives friction coefficient

«Contact conditions => A # F,, can use to calculate shear stress




29 I Friction vs. Temperature

0.2 ——m———— —,———
- O experiments R
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temperature, T (K)
*MD has more defects, expect higher mu

*Functional form is the same



3 1 Commensurate vs. Incommensurate Sliding
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Top View

Side View
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Top View
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Side View

sCommensurate barrier ~= 300 K
[ncommensurate barrier ~= 10K
*Rotation barrier ~= 150K
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What happens with oxygen and water?

015+

o
—
=]

=
=
o

Friction Coefficient

Atomic O defective

*Friction goes down?

*This is unfair...
» Water and oxygen passivate defect sites
* Need to do this in the pure system, too
» Look at non-stoichiometric (i.e. defect-free) nanoplatelets




12 1 Friction in Environments

stoichiometric/defective

0.18 -
@ Ny+H 040, 60%RH i
0,16 4 O NysH O 24%RH
E 0.14 4 B N0,  <300ppm =
‘T 0.2 - 0O N =30ppm Em‘;m 'g
9 EI,‘HJ
£ 010+ ?f 5
E 0.08 - S
oxygen c
S 006 4 ?f?’d?ﬁrlpnt =]
= 2 0.05
2 0,04 2
L
0.02 1
ﬂ o T 1 T T U
0 100 150 200 250 \.-‘acuum Atomic O H20
sliding temperature (°C)
Khare and Burris, Tribo. Lett. 2013 defeCt free

*Changes with added oxygen or water match experimental results




13 1 Effects of Oxygen on Inter-platelet bonding
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oxygen passivated defect free
*Oxygen bonds to defect sites & prevents formation of larger sheets
*Molecular oxygen looks very similar
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14 | Effects of water on Inter-platelet bonding

o

water passivated defect free

*Water also bonds to defect sites & prevents formation of larger sheets

*\Water aggregates with itself more than oxygen does




35 1 Counts of inter-platelet bonds confirm

1500 -
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g 1000 -

0

°
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E =

= 500

% -
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AO 02 H20 defects defect free

Environmental species interrupt formation of larger flakes




3 1 Summary

*MoS2 shows purely elastic contact
*Shear is predominantly due to inter-lamellar interactions
*MD calculates correct shear strengths as a function of temperature

*Developed simple model based on probabilities:
* Energy barriers determine the shear strength
* Rotate, and slide incommensurately
* Fail to rotate and slide commensurately

eIncommensurate sliding is the most important — can neglect
commensurate

«Simple model predicts temperature dependence




7 1 What about chemistry?

top layers
rigid, held spatially fixed

. AOor0,gas
___ thermally equilibrated for 100 ps
thermostat at 250°C: NVE ensemble

surface layer
nanocrystalline MoS,
rigid, held spatially fixed

bounding layer
rigid, held spatially fixed

*Take systems that have “run-in” (i.e. reached steady-state shearing) I
*Remove top layers
*Apply O2, AO or H,0 at 100 atm

*Replace top layers




31 LEIS experiments
A) 30 min AO, 20°C
4 ordered amorphous
O asdep. O asdep.
] - AQ,20°C | -@- AO, 20°C

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
approximate depth (nm)
B) 30 min O, gas, 250°C
4 ordered amorphous
O asdep. O asdep.
-m- 0,250°C | -0 0,,250°C
3 F -
o}
=
o2F
4
0

1.0 15 20 25
approximate depth (nm)

A) Simulation structure

B) 30 min AO, 20°C

0.35

Curry, et al, ACS Appl. Mater. Interfaces, 2017

top layers
rigid, held spatially fixed

AOorO0,gas
thermally equilibrated for 100 ps
thermostat at 250°C; NVE ensemble

surface layer
nanocrystalline MoS,
rigid, held spatially fixed
bounding layer
rigid, held spatially fixed

C) 30 min O, gas, 250 °C

—— MD densified —— MD nanocrystalline

0.35
030 —— MD densified —— MD nanocrystalline

0 0.3

0.6 0.9 12
approximate depth (nm)

1.5 0 03 0.6 0.9 1.2 1.5
approximate depth (nm)

MD accurately represents oxygen depth profiles as seen in LEIS experiments




