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7 EMBIRE EM-TL Coupling

,/ TEM Mode assumption in TL domain
/"« Variational — couple through surface integrals — this allows it to apply to arbitrary meshes

* Implicit coupling — introduces no new stability constraints — we developed an efficient linear solver to
handle implicit solves

* Self-consistent — coupling is based directly on the assumptions used to derive the TL model- we
enforce continuitv of voltage and current at the interface in the sense of a projection

0.5
— Absorber
H -==- No Absorber
0.4 -

0.3 1

O
<
O
L
<
el
T
L)

0.2 1
0.1 1
0.0 1

=0.1 4

E_Field Magnitude
0.0e+00 1 2 3 4 5 6 7 8 9 1.0e+01

— | —

EdL AK Gap (V)

=

* We enforce voltage continuity via a constraint and a Lagrange multiplier

* Allows us to apply an additional boundary condition at the EM/TL interface 000 025 050 075 100 125 150 175 200
Simulation Time (ns)

* We apply an absorbing BC at the interface that absorbs non-TEM modes :

* Reduces unphysical ringing due to reflection of non-TEM modes ‘
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EMPIRE’s EM-TL Coupling: demonstration
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,/TI\/I wave contributions develop in high power accelerators

74 Deviations from ideal (TEM) propagation arise from:

* Changes along the EM transmission line geometry:
* Small asymmetries: speed bumps, corners, holes, mating contacts between electrode plates

#

/

* Large asymmetries: convolute, rapidly changing curvature near the load
* Nonlinear mechanisms (e.g. plasma, gap closure, electrode melt)
* Pulse shaping and machine jitter
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These effects alter the overall wave structure: TEM - TEM/TE/TM



/ Example: EM simulation of the Z acceler

1.0<R<1.3cm \\o“e@\e
/ R=0.8cm SR (final feed neck)
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Rt = 0.8cm (final feed chin)
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//' Example: EM simulation of the Z accelerator (18a)

/ R=32.5cm
R=0.8cm /(mitl A start)
(final feed
chin)

R =32.5cm (mitl A port)

w— TM(0) w0 TM(1) = %0 TM(2) e TEMJ
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The energy content is nearly 100% TEM near the port (right plot) but develops a significant TM contribution near the load



//'Abstract Modeling Problem

Full Domain

Maxwell’s Equations
(%—?—FJ—curlH:O
%—]? +curl E=0

QTL r QEM

div D =p
L div B=0
! _ ! Simple Dielectric
1D Domain 2D or 3D Domain
{D — ¢E
Example EM-TL Coupling Interfaces B = MH
6]"_4 ‘
Za o Homogeneous BCs
( ) E xn=0 on conductors
aT Hxn=0 onsymmetry

< o J is data, we’ll assume

(] ™,

T its zero in TL domain 7‘
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/" Transverse Magnetic Mode Definition
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/ Modal Decomposition (finite)

,/ An approximation of an arbitrary TM mode can be written as

/ M These modes are orthogonal
" (E, = Vrem,.rETEM » + ijl Viem i M 7
M We can evolve each of the
< En — Zj:l VTM,n,jETM}n,j modes independently from
M initial data using thei
H, =Irem-Hrem - + ) Itvmr ;HrMm - 5 Mitlal ata Hsing thel
’ ’ J 1Y e e respective telegrapher
\Hn =2 equations

Initial voltages and currents computed with projections onto the modes

/ Eo(T,n), ETpMm.»r dA / Hy(r,n) Hypm - dA
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,/-
i/ Coupling Strategy
/

For the coupling between EM and TL domains to be Exact Continuity
consistent we need tangent fields to “somehow agree” at Qrr ; Qe
the coupling interface. :

The notion we impose is weaker than exact continuity
and we call it “Modal Continuity”

/ E(t) - Erv,r; dA = [[Ers,rg 2V, -, (4 1) L , e
r N\

/ H(t) -Hra,rj dA = |[Hra e |7 o5 (6 8) | (7 s
r

== TEM Projection
== T

The L2 projection of the EM fields onto the TM space at the coupling interface recovers the TL solution

Philosophical difference: The solution is TM in the TL domain vs. we don’t track non-TM parts in the TL domain



Coupled Problem
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Theoretical Order of Accuracy (Simplex Mesh)

/ e N
/ Code Veritication @@ +h o+ k2h + Af?)

/ 3D TM Wave on a TL-EM domain — ‘—l—’ ]
/ , . . . TLSpace EM Space Boundary Time
Error denotes a relative L° error for functions. Profile

cell size [ m] PPPz PPPc E.error E.rate Eyerror E,rate B,error B,rate

1.00E-03 16.2 8.5 3.I5E-02 — 5.96E-02 — 4.73E-02 -

6.67E-04 243 127 141E-02 198 288E-02 1.79 2.58E-02 1.5
5.00E-04 325 169 986E-03 1.24 1.93E-02 1.4 1.85E-02 1.16
4.00E-04 40.6 21.1 750E-03 123 146E-02 124 143E-02 1.14

27
Rates are computed using a pairwise fit. PPP = o
Time: 0.000000e+00
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Saturn Exemplar
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//'
>~ Saturn Exemplar

/ e Saturn’s water convolute may introduce
jitter to the EM Drive

Assuming a cylindrical cross-section

2 2 _ 212
W* — WM pnm = C k

ovnn =) () + (2

* Decrease in AK gap should regularize
z directed jitter

* Radial convergence should regularize
O directed jitter

* Hypothesis: energy in TM modes should
decrease as r->0
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F Saturn Exemplar

Reduced domain size, 5° wedge.
Drive water section with TM; o mode.

Drive frequency between wrn 1,0 for the water section and vacuum section.
Time: 1.2/4e-08 s Time: 1.2/4e-08 s

3.0e+03
2500

8000
2000
1500
L 4000
— 1000
— 2000 % _ 500 g
0 ™~ 0 >
T T
[ ] @
—-2000 i —-500 &
w w
4000 —-1000
..... 1500
-6000
2000
8000 2500

-1.0e+04

Transverse Electric Field Normal Electric Field




Saturn Exemplar

Time: 0.000e+00 s
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//'
Saturn Exemplar

How do we measure that
the size of the TM
perturbation decreases?

Approach TM surface
diagnostics!

Vacuum region
er=1

Rexolite
€, = 2.53

Water
€, = 80
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/ Saturn Exemplar

Electric Energy per unit length normalized by drive energy for the mode
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We observe energy content of the TM wave perturbation decreases along the length of the vacuum mitls
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L'ife after LDI'RD

Productionization in EMPIRE

* Harden capability as its used
* Implement TE modes

* Refactor EMTL Coupling

* Implement EM-TE coupling

EMPIRE-Cable

* EMPIRE’s TL simulation capability has
been spun off into a standalone
capability (BERTHA-like)

* Sceptre Coupling

* Xyce Coupling

Enable new Capabilities/Directions
* HPM applications

* Near-field/Far-field coupling

* High order outflow conditions

Design and Assessment

* (Capabilities developed in this LDRD can be used
to design new powerflow devices or assess
existing in terms of “power flow efficiency”

Regrets

Extended Transmission line models

* Still desire for capability

 Added to EMPIRE-Cable Roadmap FY25

Target Coupling

* No funding stream identified

* Raises important programmatic question
“Who owns a code coupling capability”
Examples: ITS-EMPIRE, FORTE, Charon-Xyce

O o
DODRD Lo S omeeres






P/ RK Time Integration
3 Discretization 0] O 0

4 11 0 1
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Compatible Finite Elements
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// Code Veritication., ,,uan
,/ 3D TM Wave on a TL-EM domain

/ Z:_Lz ZZO Z:L'Z

E([)ﬂ;]) cos (kLL?”}y) sin(wt — kM)

C

E[T,'] sin (k[,m]y) cos(wt — kM 2)

Wwe [’!n}

anz) coS (kgm]y) sin(wt — k™ 2)




/
? Numerical Method (transverse profiles)

/ To solve the for wavenumber and eigenmode we will solve the eigenproblem on the coupling surface.
We use nodal finite elements on the surface mesh for this.

We perform a solve for the M smallest eigenvalues/eigenfunctions of the Laplace operator

1

©TM.j.h €E NP TM B / ©TM,jhPh dA = 2 Vormjn - Von dA,  Von, € Nrvon
r SJT

We solve the problem using Block Davidson algorithm found in Anasazi package

Once the solve is complete we normalize and orient (with a reference function) the eigenfunction

Our coupling algorithm only requires the tangent E field so we compute

Ermrin €€rn i Ermrin = —VOTM, 4K




«/Numerical Method (for TL domain)

/ We then evolve the decoupled 1D telegrapher equations using your favorite method

g ’ We use Crank-Nicolson time integration in time and P1/P0 elements in space C GVT 8IT _
(VT,Vn,I)EthIthh )
V”’ —V’”’ IZT 4TI
 Mz(C)-rr — Mz(k) = —
iy vty vty
\MI(L) X —+ MI(]{) 5 —+ MIDh 5 = (
We reduce the TM solve to a TEM solve by discretely eliminating Vn in every time step
Data: Residual vectors Ry, Ry, , Ry
Result: Increments AV, AV,,, Al SI - MI(L + 3 ﬁ2 C )2
Compute R; = R — E WCRV ; T 1
AL — = oM -2 p D
Compute Ry, = Ry, — 3 D} (Sz) 'Ry, SN = a N(O) o (SI) h
Solve SyrAV, = RpT : TEM Solve
Update Al = L(S7)"Y (R, — BDyAVL) ;

Update AV, = 2(Q%)~ 'Ry, + g]I?CAIT ;




