
An adjoint based a posteriori error analysis for MHD
Ari Rappaport, John Shadid

Center for Computing Research, Sandia National Laboratories

Jehanzeb Chaudhry, Ari Rappaport, John Shadid
Department of Mathematics and Statistics, University of New Mexico

Wednesday 4th March, 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of
Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. SAND NO.

SAND2022-4564CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Context

▶ Adjoint based optimization strategies explored for MHD and
Grad-Shafranov1,2

▶ No adjoint based error analysis (full error decomposition)
applied to MHD

▶ Study error contributions to inform discretizations and solver
methods

1Zhigang Ren et al. Adjoint-based parameter and state estimation in 1-D magnetohydrodynamic (MHD) flow
system. Jan. 2018. url: https://www.aimsciences.org/article/doi/10.3934/jimo.2018022.

2Thomas Antonsen, Elizabeth J. Paul, and Matt Landreman. Adjoint approach to calculating shape gradients
for three-dimensional magnetic confinement equilibria: Journal of Plasma Physics. Mar. 2019. url:
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/adjoint-approach-to-
calculating-shape-gradients-for-threedimensional-magnetic-confinement-
equilibria/ED3C467C28CB98B2B7B036EA356120EB.

https://www.aimsciences.org/article/doi/10.3934/jimo.2018022
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/adjoint-approach-to-calculating-shape-gradients-for-threedimensional-magnetic-confinement-equilibria/ED3C467C28CB98B2B7B036EA356120EB
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/adjoint-approach-to-calculating-shape-gradients-for-threedimensional-magnetic-confinement-equilibria/ED3C467C28CB98B2B7B036EA356120EB
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/adjoint-approach-to-calculating-shape-gradients-for-threedimensional-magnetic-confinement-equilibria/ED3C467C28CB98B2B7B036EA356120EB
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What is MHD?

▶ Mathematical Model: Continuum representation of collisional
plasma systems.

▶ Strongly coupled conducting fluid flow with reduced
electromagnetics description

▶ Structure of simple MHD is Navier-Stokes + Lorentz force
coupled with low frequency Maxwell equations.



MHD System

Stationary incompressible MHD system

− 1

Rf
∆u + u · ∇u +∇p − κ(∇× B)× B = f

∇ · u = 0,
κ

Rm
∇× (∇× B)− κ∇× (u × B) = 0,

∇ · B = 0,

▶ Unknowns: magnetic field B, velocity u, pressure p
▶ Nondimensionalized parameters: Reynold’s number Rf,

magnetic Reynold’s number Rm, interaction parameter κ.
▶ Incompressibilty and solenoidal involution produce saddle

point structure
▶ Three sources of nonlinearity + coupling between equations =

complex multiphysics system



Exact Penalty Method Assumptions

▶ Exact penalty relies on the continuous embedding3 of
H(curl) ∩ H(div) ⊂ H1

▶ Only valid for convex domains
▶ With this assumption, B will be in H1(Ω)

We need to following spaces,

H1
0(Ω) := {w ∈ H1(Ω) : w|∂Ω ≡ 0},

H1
τ (Ω) := {w ∈ H1(Ω) : (w × n)|∂Ω ≡ 0}.

Then define the product spaces,

P0τ (Ω) := H1
0(Ω)× H1

τ (Ω),

P(Ω) := P0τ (Ω)× L2(Ω).

3Martin and Monique Dauge. Weighted regularization of Maxwell equations in polyhedral domains. Dec. 2002.
url: https://link.springer.com/article/10.1007/s002110100388.

https://link.springer.com/article/10.1007/s002110100388


Exact Penalty Weak Form

Find U := ((u,B), p) ∈ P(Ω) such that

NEP(U,V) = (F,V), ∀V ∈ P(Ω),

where

NEP(U,V) =
1

Rf
(∇u,∇v) + (u · ∇u, v)− (p,∇ · v) + (q,∇ · u)

+ κ((∇× B)× B, v) + κ(∇× (u × B),C) +
κ

Rm
(∇× B,∇× C)

+
κ

Rm
(∇ · B,∇ · C).

and
F = ((f,0), 0).

Well posedness of the exact penalty weak form already shown4

4Max D. Gunzburger, Amnon J. Meir, and Janet S. Peterson. “On the existence, uniqueness, and finite element
approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics”. In: Mathematics
of Computation 56.194 (1991), pp. 523–523. doi: 10.1090/s0025-5718-1991-1066834-0.

https://doi.org/10.1090/s0025-5718-1991-1066834-0
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Galerkin Discretization for linear problems

Abstract variational problem: find u ∈ V such that

a(u, v) = (f, v), ∀v ∈ V,

for some data f ∈ V. Consider a finite dimensional subspace
Vh ⊂ V and solution of the approximate problem: find uh ∈ Vh
such that

a(uh, v) = (f, v), ∀v ∈ Vh.

Denote the error eh = u − uh.



Error representation

The adjoint form a∗ can be defined by the relation (modulo
boundary conditions)5

a∗(v, u) = a(u, v), ∀u, v ∈ V.

If ϕ solves the dual problem: find ϕ ∈ V such that

a∗(ϕ, v) = (ψ, v), ∀v ∈ V,

the we have the following error representation,

Theorem
The error in a (linear) QoI represented by QoI = (ψ, u) is
computable as (ψ, e) = (f, ϕ)− a(uh, ϕ).

5Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in finite
element methods: Acta Numerica. Jan. 2003. doi: https://doi.org/10.1017/S0962492901000010.

https://doi.org/https://doi.org/10.1017/S0962492901000010


Adjoint for nonlinear maps

▶ Let N ∈ C1(V,V). For u, uh fixed, define6

N̄u,uh(w) =
∫ 1

0
N′(su + (1− s)uh) ds w,

where N′ is the derivative of N. By the integral mean value
theorem,

N̄u,uh(u − uh) = N(u)− N(uh),

▶ Suppose N (u, v) = (N(u), v), and define
N ∗

(u, v) = (N̄∗
u,uh(u), v)

▶ Solve the (linear) problem
N ∗

(ϕ, v) = (ψ, v), ∀v ∈ V,
we have the error representation,

(ψ, e) = N ∗
(ϕ, e) = (N̄∗

u,uh(ϕ), e) = (ϕ, N̄u,uh(e))
= (ϕ, N̄u,uh(u − uh)) = (ϕ,N(u)− N(uh)).

6Donald Estep. A Short Course on Duality, Adjoint Operators, Green’s Functions,and A Posteriori Error
Analysis. url: https://pdfs.semanticscholar.org/a7f9/59110a2442e55b696d0b89c2d5cef5dcee51.pdf.

https://pdfs.semanticscholar.org/a7f9/59110a2442e55b696d0b89c2d5cef5dcee51.pdf


Exact penalty framework

▶ Let V =
∏n

i=1 Vi be a product space of vector valued Hilbert
spaces Vi = Vi(Ω), with Ω ⊂ Rd (e.g. H1

0(Ω)× H1
τ (Ω)).

Suppose we have the following nonlinear problem: find u ∈ V
such that

N (u, v) = (f, v), ∀v ∈ V,
▶ N : V × V → R is now more generally given by

N (u, v) =
m∑

i=1

(Ni(u), vℓi) + a(u, v),

▶ a(u, v) is a billinear form and ℓi ∈ {1, . . . , n}, for each i.
▶ define the vector operator

N(u) =
[
N1(u), . . . ,Nm(u)

]T
.



Necessary constructions

▶ For fixed solution/approxmiate pair u/uh, define the averaged
Jacobian matrix J (N), by

J ij =

∫ 1

0

∂Ni
∂uj

(su + (1− s)uh) ds,

▶ ∂Ni
∂uj

(·) denotes the derivative of Ni w.r.t. the argument uj.
The linearized operator N̄i is next defined for w ∈ V, by

N̄i(w) =
∫ 1

0

∂Ni
∂u (su + (1− s)uh) ds w

=

n∑
j=1

∫ 1

0

∂Ni
∂uj

(su + (1− s)uh) ds wj =
n∑

j=1

J ijwj.



Necessary constructions cont.

▶ Next define

ν i(u, v) = (N̄i(u), vℓi) =

 n∑
j=1

J ijuj, vℓi

 =

n∑
j=1

(
J ijuj, vℓi

)
.

with a(u, v) = νi(u, v). The full linearized adjoint operator is
thus,

N∗(u, v) =
m∑

i=1

ν∗i (u, v) + a∗(u, v).



Nonlinear error representation

Then if ϕ solves the dual problem,

N ∗
(ϕ, v) = (ψ, v), ∀v ∈ V,

we have the following theorem

Theorem
The error in a QoI represented by Q(u) = (ψ, u) is computable as
(ψ, e) = (f, v)−N (uh, ϕ).

Takeaway: we just need to adjoints to the linear operators J ij.



MHD Specific Cases

We consider the three nonlinear terms,

(N1(u,B),C) = (∇× (u × B),C),

(N2(B), v) = ((∇× B)× B, v)
(N3(u), v) = (u · ∇u, v).

The linearized forms J ij as described before are are

J ∗
11(v1) = 1

2(B + Bh)× (∇× C),

J ∗
12(v2) = 1

2(u + uh)× (∇× v),
J ∗

21(v1) = 1
2(−(∇× (B + Bh)× v) +∇× ((B + Bh)× v),

J ∗
31(v1) = 1

2

[
v ·

(
(∇u +∇uh)

T)− ((u + uh) · ∇v)− ((∇ · (u + uh)v)
]



Error representation for MHD

Theorem (Error representation for MHD)
For a given QoI represented by Ψ = ((ψu,ψB), ψp)T, the
numerical error satisfies

(Ψ,E) = N ∗
EP(Φ,E) = NEP(U,Φ)−NEP(Uh,Φ)

= (F,Φ)−NEP(Uh,Φ)

= (F,Φ)−
[
1

Rf
(∇uh,∇ϕ) + (uh · ∇uh,ϕ)

− (ph,∇ · ϕ)− κ((∇× Bh)× Bh,ϕ) + (∇ · uh, π)

− κ

Rm
(∇× Bh,∇× β)− κ(∇× (uh × Bh),β)

+
κ

Rm
(∇ · Bh,∇ · β)

]
.



Error components

1. The discretization error in the momemtum equation is

Dmom =
1

Rf
(∇uh,∇ϕ) + (uh · ∇uh,ϕ)− (ph,∇ · ϕ)

− κ((∇× Bh)× Bh,ϕ).

2. The discretization error in the continuity equations is

Dcon = (∇ · uh, π).

3. the “magnetic” discretization error is

DM = − κ

Rm
(∇× Bh,∇× β)− κ(∇× (uh × Bh),β)

+
κ

Rm
(∇ · Bh,∇ · β).
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Hartmann Problem

▶ Consider the flow of a conducting fluid in a channel
Ω = [−1/2, 1/2]2, with an external magnetic field
Bext = (0, 1) prescribed on ∂Ω.

▶ Analytic solution7, u = (ux, 0), B = (Bx, 1)

ux =
G Rf(cosh(H/2)− cosh(Hy))

2H sinh(H/2)

Bx =
G(sinh(Hy)− 2 sinh(H/2)y)

2κ sinh(H/2)

p = −Gx − κB2
x/2,

▶ G = −dp
dx is an arbitrary pressure drop

▶ so-called Hartmann number H =
√

RfRmκ

7Edward G. Phillips et al. “A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD”. In:
SIAM Journal on Scientific Computing 36.6 (2014). doi: 10.1137/140955082.

https://doi.org/10.1137/140955082


Hartmann profiles with increasing H

(a) Velocity (b) B field



Hartmann adjoint results

Eff. = Effectivity =
true error

error estimate

2D Elem. Computed QoI True Error Eff. Dmom Dcon DM
1024 3.56e-01 -6.07e-03 0.994 -2.74e-07 1.98e-06 6.03e-03
4096 3.51e-01 -1.53e-03 0.998 -6.28e-09 6.29e-08 1.52e-03
16384 3.50e-01 -3.82e-04 1.000 1.00e-08 1.34e-09 3.82e-04
65536 3.50e-01 -9.57e-05 1.000 7.51e-08 2.32e-11 9.56e-05

Table: Results using ((P2,P1),P1) elements for ((u,B), p).

2D Elem. Computed QoI Error Eff. Dmom Dcon DM
1024 3.50e-01 -1.11e-06 0.900 -3.86e-05 1.51e-06 3.81e-05
4096 3.50e-01 -4.90e-08 0.931 -2.47e-06 6.03e-08 2.45e-06
16384 3.50e-01 -6.93e-09 0.989 -1.49e-07 1.37e-09 1.54e-07
65536 3.50e-01 1.94e-07 1.000 -2.04e-07 2.57e-11 9.67e-09

Table: Results using ((P2,P2),P1) elements for ((u,B), p).



Magnetic lid driven cavity

Figure: Boundary condtions for ux

Augmented with constant By = −1 on top and bottom to retard
flow



Regularization of the lid velocity

▶ Use a polynomial regularization of the lid velocity8 to get
expected orders of convergence

utop(x) = C
(
x − 1

2

)2 (x + 1
2

)2
,

▶ C chosen so that ∫ 1/2

−1/2
utop(x) dx = 1

8Michael W. Lee, Earl H. Dowell, and Maciej J. Balajewicz. A study of the regularized lid-driven cavity’s
progression to chaos. Nov. 2018. doi: https://doi.org/10.1016/j.cnsns.2018.11.010.

https://doi.org/https://doi.org/10.1016/j.cnsns.2018.11.010


Regularized plots for varying Rm



Discontinuous plots

Results for discontinuous magnetic lid velocity9

9Edward G. Phillips et al. “A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD”. In:
SIAM Journal on Scientific Computing 36.6 (2014). doi: 10.1137/140955082.

https://doi.org/10.1137/140955082


Lid driven cavity adjoint results

Eff. = Effectivity =
true error

error estimate

2D Elem. Computed QoI Error Eff. Dmom Dcon DM
1600 -2.09e-02 -6.64e-04 1.080 -2.83e-04 -4.27e-04 -6.81e-06
3600 -2.04e-02 -2.00e-04 0.949 -4.34e-05 -1.37e-04 -9.07e-06
6400 -2.03e-02 -6.99e-05 0.948 -1.49e-05 -4.37e-05 -7.71e-06

Table: Results using ((P2,P1),P1) elements for ((u,B), p).

2D Elem. Computed QoI Error Eff. Dmom Dcon DM
1600 -2.03e-02 6.08e-05 0.702 -1.42e-05 -2.88e-05 2.31e-07
3600 -2.03e-02 2.13e-05 0.876 -2.24e-06 -4.40e-06 -1.21e-05
6400 -2.03e-02 1.06e-05 0.954 -5.00e-07 -1.08e-06 -8.50e-06

Table: Results using ((P3,P2),P1) elements for ((u,B), p).

▶ χL=-0.25, χR=0.25, χB=-0.5, χT=0.0.
▶ The overkill solution is compted on a 400x400 mesh, Re=2000, Rm=0.4, κ = 1.
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