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» Adjoint based optimization strategies explored for MHD and
Grad-Shafranov!2

» No adjoint based error analysis (full error decomposition)
applied to MHD

» Study error contributions to inform discretizations and solver
methods

thigang Ren et al. Adjoint-based parameter and state estimation in 1-D magnetohydrodynamic (MHD) flow
system. Jan. 2018. URL: https://www.aimsciences.org/article/doi/10.3934/jimo.2018022.

2Thomas Antonsen, Elizabeth J. Paul, and Matt Landreman. Adjoint approach to calculating shape gradients
for three-dimensional magnetic confinement equilibria: Journal of Plasma Physics. Mar. 2019. URL:
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/adjoint-approach-to-
calculating-shape-gradients-for-threedimensional-magnetic-confinement-
equilibria/ED3C467C28CB98B2B7B036EA356120EB.


https://www.aimsciences.org/article/doi/10.3934/jimo.2018022
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/adjoint-approach-to-calculating-shape-gradients-for-threedimensional-magnetic-confinement-equilibria/ED3C467C28CB98B2B7B036EA356120EB
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/adjoint-approach-to-calculating-shape-gradients-for-threedimensional-magnetic-confinement-equilibria/ED3C467C28CB98B2B7B036EA356120EB
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/adjoint-approach-to-calculating-shape-gradients-for-threedimensional-magnetic-confinement-equilibria/ED3C467C28CB98B2B7B036EA356120EB
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Magnetohydrodynamics (MHD)
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What is MHD? o

» Mathematical Model: Continuum representation of collisional
plasma systems.

» Strongly coupled conducting fluid flow with reduced
electromagnetics description

» Structure of simple MHD is Navier-Stokes + Lorentz force
coupled with low frequency Maxwell equations.



MHD System D=

Stationary incompressible MHD system

1
—EAu+u-Vu+Vp—/@(V>< B)xB=f
f

V. -u=0,
RivX(VXB)—Wx(uxB):o,
V.B=0,

v

Unknowns: magnetic field B, velocity u, pressure p

» Nondimensionalized parameters: Reynold’s number Ry,
magnetic Reynold’s number R,,, interaction parameter x.

» Incompressibilty and solenoidal involution produce saddle
point structure

» Three sources of nonlinearity + coupling between equations =

complex multiphysics system
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Exact Penalty Method Assumptions foto

» Exact penalty relies on the continuous embedding? of
H(curl) N H(div) ¢ H

» Only valid for convex domains

» With this assumption, B will be in H'(Q)

We need to following spaces,

H(Q) = {we H(Q) : wlan = 0},
HL(Q) := {we H'(Q) : (wx n)|sq = 0}.

T

Then define the product spaces,

P0-(Q) = Hy() x HL(2),
P(Q) = P, (Q) x L2(Q).

3Martin and Monique Dauge. Weighted regularization of Maxwell equations in polyhedral domains. Dec. 2002.
URL: https://link.springer.com/article/10.1007/s002110100388.


https://link.springer.com/article/10.1007/s002110100388
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Exact Penalty Weak Form =1

Find U:= ((u, B), p) € 2() such that
Nep(U, V) = (F, V), YVe 2(Q),
where
Nep(U, V) = (Vu Vv) + (u-Vu,v) = (p,V-v)+(q,V - u)

—|—/<a((V><B)xB,v)—l—/a(Vx(uxB),C)—i—Ri(VxB,VxC)
K

+ 4 (V- BY-C).

and
F=((£0),0).

Well posedness of the exact penalty weak form already shown*

*Max D. Gunzburger, Amnon J. Meir, and Janet S. Peterson. “On the existence, uniqueness, and finite element
approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics”. In: Mathematics
of Computation 56.194 (1991), pp. 523-523. DOI: 10.1090/s0025-5718-1991-1066834-0.


https://doi.org/10.1090/s0025-5718-1991-1066834-0
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A posteriori error analysis
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Galerkin Discretization for linear problems N

Abstract variational problem: find u € V such that
a(uv) = (F), e V,

for some data f& V. Consider a finite dimensional subspace
V,, C V and solution of the approximate problem: find u, € V,
such that

a(up, v) = (f,v), Vv € V.

Denote the error e, = u — up,.
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Error representation e

The adjoint form a* can be defined by the relation (modulo
boundary conditions)®

a*(v,u) = a(u,v), Yu,ve V.
If ¢ solves the dual problem: find ¢ € V such that
a(¢,v) = (¥,v), VeV,

the we have the following error representation,

Theorem

The error in a (linear) Qol represented by Qol = (¢, u) is
computable as (¢, ) = (f,¢) — a(up, ).

5Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in finite
element methods: Acta Numerica. Jan. 2003. DOI: https://doi.org/10.1017/50962492901000010.


https://doi.org/https://doi.org/10.1017/S0962492901000010
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> Let Ne Cl(Va V). For u, up, fixed, define®
1
Nu,u, (W) = / N (su+ (1 — s)up) dsw,
0

where N\ is the derivative of N. By the integral mean value
theorem,

,_Vu uh(u - Uh) = N(u) - N(“h)a
> SuEpose N (u,v) = (N(u), v), and define
N (u,v) = (N, (1), v)

u,up

» Solve the (linear) problem
N (b, v) = (¥, v), YveV,
we have the error representation,
(b, e) = N (g, €) = (N}, (9), €) = (¢ Nuyu, (€))
= (¢, Nuu,(u — up)) = (¢, N(u) — N(up)).

5Donald Estep. A Short Course on Duality, Adjoint Operators, Green's Functions,and A Posteriori Error
Analysis. URL: https://pdfs.semanticscholar.org/a7£9/59110a2442e55b696d0b89c2d5cef5dceebl . pdf.



https://pdfs.semanticscholar.org/a7f9/59110a2442e55b696d0b89c2d5cef5dcee51.pdf
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Exact penalty framework =1

> Let V=[], Vi be a product space of vector valued Hilbert
spaces V; = V4(2), with Q C R? (e.g. H5(Q) x HL(Q)).
Suppose we have the following nonlinear problem: find u € V
such that
N(u,v) = (f,v),Vve YV,

» AN : Vx V— R is now more generally given by

m

N ) = S (Ni(w), vi,) + a(u, v),

i=1

» a(u,v) is a billinear form and ¢; € {1, ..., n}, for each i.

» define the vector operator

N(u) = [Ni(u), ... ,Np(u)l



Necessary constructions

» For fixed solution/approxmiate pair u/up, define the averaged
Jacobian matrix 7 (N), by

— Lan;
Ty = /0 G s+ (1= 5u) .

> g’\i( ) denotes the derivative of N w.r.t. the argument wu;.
The linearized operator N; is next defined for w € V, by

1 .
:/ Oall\j,( (1 — s)up) dsw
- Z/ 8uj ZJUWJ
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Necessary constructions cont. () e

> Next define

n

vi(u,v) = (Ni(w), ve)) = | D Tiujpve, | =Y (Tiujs viy) -
=1

Jj=1

with a(u, v) = vj(u, v). The full linearized adjoint operator is
thus,

m

N*(u,v) =75 (u,v) + a*(u, v).

i=1
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Then if ¢ solves the dual problem,
N (¢,v) = (¥, v), Vve V,

we have the following theorem

Theorem

The error in a Qol represented by Q(u) = (¢, u) is computable as

(1/% e) = (f; V) —N(Uh,¢).

Takeaway: we just need to adjoints to the linear operators 7,1



MHD Specific Cases

We consider the three nonlinear terms,

(Ny(u,B),C) = (V x (ux B),C),
(Na(B),v) = ((V x B) x B,v)
(Ns(u),v) = (u-Vu,v).

The linearized forms 7;1- as described before are are

T11(v1) = 3(B+ By) x (V x ©),

T12(va) = §(u+up) x (V x v),

Tan(v) = 3(=(V x (B+ By) x v) + V x ((B+ By) x v),

Tn(vi) =Lv- (Vu+Vup)") — (u+up) - Vv) = (V- (u+ up)v) ]



Error representation for MHD

Theorem (Error representation for MHD)

For a given Qol represented by ¥ = ((1),,%g),¥p) ", the
numerical error satisfies

(U, E) = Ngp(®, E) = Nep(U, D) — Nep(U, @)
= (F,®) — Nep(Up, )
=(F®) - [;f(v”h’w’) + (up - Vup, @)
— (P, V- @) — K((V x Bp) X By, @) + (V- up, )
R—m(V X Bp,V x 3) — k(V x (up x By), B)

K

R,,,(V Bh,V'ﬂ)]-
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1. The discretization error in the momemtum equation is

;f(Vuh, V@) + (up-Vup, @) — (pr, V- ¢)

— k((V x Bp) x Bp, @).

Dmom =

2. The discretization error in the continuity equations is
Deon = (v : Uhaﬂ')-
3. the “magnetic” discretization error is

Dy = _Ri(v x B,V x B) — k(V x (up x By), B)

m

+Ri(v.3h,v.5).

m
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Results
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Hartmann Problem [l

» Consider the flow of a conducting fluid in a channel
Q) = [~1/2,1/2])%, with an external magnetic field
Byt = (0,1) prescribed on 0.

» Analytic solution’, u = (ux,0), B= (By, 1)

_ G Re(cosh(H/2) — cosh(Hy))

i 2Hsinh(H/2)
B _ G(sinh(Hy) — 2sinh(H/2)y)
- 2k sinh(H/2)

p=—Gx—rB2/2,

> G= —% is an arbitrary pressure drop

» so-called Hartmann number H = \/RfRmk

"Edward G. Phillips et al. “A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD". In:
SIAM Journal on Scientific Computing 36.6 (2014). poI: 10.1137/140955082.


https://doi.org/10.1137/140955082

Hartmann profiles with increasing H (@) i,

(a) Velocity (b) B field
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true error
Eff. = Effectivity = —————
error estimate

2D Elem. Computed Qol True Error Eff. Dmom Dcon D
1024 3.56e-01 -6.07e-03 0.994 -2.74e-07 1.98e-06 6.03e-03
4096 3.51e-01 -1.53e-03 0.998 -6.28e-09 6.29e-08 1.52¢-03
16384 3.50e-01 -3.82e-04 1.000 1.00e-08 1.34e-09 3.82e-04
65536 3.50e-01 -9.57e-05 1.000 7.51e-08 2.32e-11 9.56e-05

Table: Results using ((P2,P!),P!) elements for ((u, B), p).

2D Elem. Computed Qol Error Eff. Dmom Dcon Dy
1024 3.50e-01 0.900 -3.86e-05 1.51e-06
4096 3.50e-01 0.931 -2.47e-06 6.03e-08
16384 3.50e-01 0.989 -1.49e-07 1.37e-09
65536 3.50e-01 1.000 -2.04e-07 2.57e-11

Table: Results using ((P2,P?),P!) elements for ((u, B), p).
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v=1

lid

\ noslip ——= 1

walls

=0
P 1

Figure: Boundary condtions for u,

Augmented with constant B, = —1 on top and bottom to retard
flow



Regularization of the lid velocity @ &,

» Use a polynomial regularization of the lid velocity® to get
expected orders of convergence

trop(x) = C(x— 3)* (x+ 1)

» C chosen so that

1/2
/ Utop(x) dx =1

~1/2

8Michael W. Lee, Earl H. Dowell, and Maciej J. Balajewicz. A study of the regularized lid-driven cavity’s
progression to chaos. Nov. 2018. DOI: https://doi.org/10.1016/j.cnsns.2018.11.010.


https://doi.org/https://doi.org/10.1016/j.cnsns.2018.11.010

Regularized plots for varying Rm
Sandia
Q=
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Results for discontinuous magnetic lid velocity®

Fic. 1. Streamlines for the MHD lid driven cavity problem with R = 5000 and R,, =
0,0.1,0.3,0.4,5, 10,20, 30. The four latter cases are zoomed in to [0,1] x [0.8,1].

9Edward G. Phillips et al. “A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD". In:
SIAM Journal on Scientific Computing 36.6 (2014). poI: 10.1137/140955082.


https://doi.org/10.1137/140955082

Lid driven cavity adjoint results

Eff. = Effectivity =

true error

error estimate

2D Elem Computed Qol Error Eff. Dmom Dcon Dy
1600 3.09e02__| -6.6404 | 1.080 | 28304 | 427e04 | 681e06
3600 -2.04e-02 -2.00e-04 0.949 -4.34e-05 -1.37e-04 -9.07e-06
6400 -2.03e-02 -6.99e-05 0.948 -1.49e-05 -4.37e-05 -7.71e-06
Table: Results using ((P2,P!),P!) elements for ((u, B), p).
2D Elem Computed Qol Error Eff. Dmom Dcon Dy
1600 -2.03e-02 6.08e-05 0.702 2.31e-07
3600 303602 | 21305 | 0876 121e 05
6400 3.03002__| 1.06e05 | 0.954 5.505-06
Table: Results using ((P?,P?),P!) elements for ((u, B), p).

> %1 =-0.25, xg=0.25, xg=-0.5, x 7=0.0.
P The overkill solution is compted on a 400x400 mesh, Re=2000, Rm=0.4, x = 1.
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