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between Boolean claims (true or false).

For example, we may desire to fill in missing data within binary

sequences. Training data: D

Binary (Boolean) sequence: (b;)Y = (01001011?011)
Solve:  p(bg|(b;)iz9, D).
We could design neural networks for this, but what would make them
efficient?

We always worry about expressivity and trainability.

As there are many, arbitrarily complicated, functions that may explain the
ra.iJQ)i B&rg@,@ndia National Labs
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Learning Logical Relationships in Binary Data

We would like data-driven approaches to learn plausible logical relationship
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K\»Typical Activation Functions
A

/O action potentials and computation in human layer 2/3 cortical neurons,” Science, vol. 367, no. 6473, pp. 83—87, 2020.
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The commonly used activation functions we might consider are: Rectified

Linear Units (ReLU), MinMax', MaxAIL?

Gidon et al.® showed that a single human neuron is capable of learning the
exclusive disjunction (xor).

None of these activation functions can achieve this in a single layer.

Lowe’s pairwise activation functions? hardcode functional relationships
corresponding to and, or, and xnor in a single layer.

Our approach allows arbitrary n-argument truth functions in a single layer.
[1] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout networks,” in International conference on
machine learning. PMLR, 2013, pp. 1319-1327.

[2] S. C. Lowe, R. Earle, J. d’Eon, T. Trappenberg, and S. Oore, “Logical activation functions: Logit-space equivalents of boolean
operators,” arXiv preprint arXiv:2110.11940, 2021.

[3] A. Gidon, T. A. Zolnik, P. Fidzinski, F. Bolduan, A. Papoutsi, P. Poirazi, M. Holtkamp, I. Vida, and M. E. Larkum, “Dendritic
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Boolean logic is typically formulated in terms of elementary

K\Truth Functions and Logical Arity
\

/ functions, conjunction (and), disjunction (or), and negation (not).
S A 256
~ Unary Ternary/ Conditioned
Forn ts, a truth table contains S
O T ALEHMEHES, @ T VDI CONTS gy |not@) | | ¥ | W2 | 91 | Gh29ag)
2™ values. There are 22 ways to fill it. 0 1 ol ol o 0
l 16 1 0 0| 0 | 1 0
i V' Material
Blnary hllp“u&'ﬁ'ﬂ'ﬁ_ 0 1 0 0
o Yo (Y1 [or(P1, ;) |and (Pq, ;) |xor(y, ;) |imp (Y, ¢2) 0 1 1 1
0|0 0 0 0 1 1 0| o0 1
0| 1 1 0 1 0 1 0o | 1 0 j
110 1 0 1 1 1 1 0 1
\ 1| 1 1 1 0 1 1 1 1 1
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corresponding belief states (probabilities) from the representations of

N Notation
\O It is important to correctly distinguish potential truth states from

) beliet Truth State  Belief State Logit Representation
Input: §&; € {0,1} p(&;) € (0,1) r; € R
Antecedent: ; € {0, 1} p(v;) € (0,1) y; € R
l Consequent: ( € {0,1} p(Cr) € (0,1) 2z €R

¢ We build towards an algorithm that processes inputs X, or x ) as a linear

transformation followed by an activation function, j
y=Mz and z= f(y,A)

The output may then serve as the input to the next layer, Zz = x (1),

/Jed Duersch, Sandia National Labs 4/14/2022 5 ?
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K\Generalizing Truth Functions to Belief Funct@éﬁm
A

To fully incorporate uncertainty into Boolean logic, we need to
account for uncertainty in antecedents, consequents, and the truth
O table (belief table). Evaluating the resulting belief function is the usual
marginalization,

Belief Hypercube

p(¢) = p(C | Y1, 902)p(1,2) +p(C | Y1, ¥2)p(Y1, 71b2)
l +p(C | 291, Y2)p(—11, 2) +p(C | =91, ~2)p(—1, 1P2).
D For n antecedents, the belief table is a hypercube with 2™ vertices. This example

to be independent, we can easily construct any truth function.

/3 shows marginalization for a general binary belief function. If we hold antecedents j

Pxor(C) = p(¢1) (1 —p(h2)) + (1 — p(1)) p(¥2).

/Jed Duersch, Sandia National Labs 4/14/2022 6 ?
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l\>Products and Vanishing Gradients

\] Suppose we represent the belief table in conjunctive normal form.

Let 1 = (¢1,%2,...,%,)  sothat p(Q)= > p(¢|v)]][p(w).
1=1

»e{0,1}n
0.J -
Backpropagation gives
5oe 197 = aw(@y L%
l The gradient can change by o 9J
orders of magnitude during and op(s)  ap(O)F p(¢ 1) l;Ip vi).
O training! 7
Within each product, every factor suppresses the gradient, thus j
| Creatlng a sensitivity problem (ill-conditioning). If we turn the learning rate

then once a vertex becomes plausible, the parameter updates

JedH ersch, Qandt }5 Eonal Labs 4/14/2022 7
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Q\» Logit Representations
A

We can fix both of these problems by working with logit representations.

O o p(1;) ) N 1
s or(g) ot ) = oy
Outputs \
o B p(¢) _ ]
Likewise ™z = 10g(p(_<)) so that p(() = T Fox(—2)

For example, binary truth functions with only antecedent and consequent

There is also an issue with ensuring coherent antecedent probabilities.
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¢ uncertainty (certain conditionals) would be
p(¢ | and) = p(¥1)p(¥2) z = —log (exp(—y1 — y2) +exp(—y1) + Oxp(yz))j
| p(¢ | or) =1 —p(—v1)p(—12) z = log (exp(y1 + y2) + exp(y1) + exp(y2))

p(C | xor) = p(th1)p(—2) + p(=11)p(h2) 2z = log(exp(’yl) + exp(’yz)>

1+ exp(y1 + y2)
Jed Duersch, Sandia National Labs 4/14/2022 8




Rather than using fixed truth functions, we would like to parameterize belief
tables so that our data can drive any logic that is useful. The logit

construction, including conditional uncertainty, of the general unary belief

é'dme?;ignary Marginalization: p(C) — p(C | ﬁ%)}?(ﬁ%) + p(¢ | 101)?(101)

K\Generalized Unary Belief Function H=
N

O

e 2 +e 2 + € 2 Te 2
l becomes z = log —agtay—yj —ag—aj —Y] —ap—a1+y) ag—a1+ty]
€

*
apg—a]—Yyj aptai —y; —agta;ty; aptaj+y;
2 + e 2 + e 2 —+ e 2

Belief Vertex

Were\‘a—o(’p(cﬁwl)) an a_()(ﬁ(C@l))
o here “ao =108\ LTSy ) MM T8\ Lo T )

This result is mildly interesting, but mostly horrifying. Such functions
are very expensive to evaluate (and differentiate), and this is just the

unary case!

/) * This prObably isn’t even numerical stable because we are moving the most important arithmetic into the exponent and
backing out.

Jed Duersch, Sandia National Labs
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Q\Log Sum Exp Max Approximation
\

Just as the log is a functor, mapping - . g
multiplicative composition to additive 06 @1;[1% Z{.:l 0g ()

composition,

0,
The log also approximately maps additive - "
composition to maximization. log Z Li | ~ ax log(:)
1=1
provided z; >0V € |n].
l This approximation is particularly good when the

maximizing term dominates by an order of
O magnitude.

Tt
TL . .
10g( E exp(:z:i)) A IMax T; provided x; € RV i€ [n].
i=1 =
j/)Jed Duersch, Sandia National Labs 4/14/2022 10 ?




I\

where s=apg+a; and d=a; — ag.

N

Algorithm 1 Adaptive Unary Activation

Input: y is a wout X 1 vector of activation inputs, or antecedent logits.

Implied by the shape of y, wyy is number of channels or output width.

1 —1
1 1]

3: Compute activation outputs, z = % (max(|y| + s.|d + y|) — max(|y| — s, |d — y])].

A is a wgy X 2 matrix of activation parameters, belief-table logits.
Output: z is a wyy X 1 vector of activation outputs, consequent logits.

I: function z = unary(y. A)

2: Compute belief-table sums, s, and differences, d, as |:5 u'] —

4: end function

/Jed Duersch, Sandia National Labs 4/14/2022
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Unary Activation
Applying LSEM to the generalized unary marginalization gives the simple
formula, 4 LSEM Approximation for Unary )
2 = o D] 5. bd + 3 ]) — max((ya| — 5. 1d — )] Sparse gradients

with no attenuation!



\What do these functlon look like?

LSEM Appronmatlon

25

1.5

z(y)

0.5

Selected Unary Activations

--------------------

max(-y.y)

log(exp(-y)+exp(y))

th T
AR

D‘ 1 1 1
-3 -2 -1 0 1 2

y

-2 -1 0 1 2 3

Even just the unary case subsumes ReLU activation. Note that the
approximation error overestimates consequent uncertainty when the
antecedent y is uncertain. As y increases, z reaches the asymptote early.

Jed Duersch, Sandia National Labs
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%\»Applying the LSEM to Binary Functions
A
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Any of the 16 binary truth tables can be obtained by a negation pattern
of arguments for one of the functions below.

Ztrue\L1,L2) = lc"git('pt.rl_le)
Zfalse\L1,L2) = _logit’(ptt"l_IE)
L1, T2

Zand (%1, T2) = min(x1, T2, 1 + 22)
Zor(T1, o) = max(xy, xo, 1 + X2)
1
Zxor(21,22) = 3 (|z1 — 22| — |21 + 22|)
We could certainly hard-code a collection of these unary and pairwise j

activations, but can we do better?
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\Adaptive N-ary Activation =

\] If antecedent probabilities are independent, then every higher arity

marginalization has a simple recursive structure,

Algorithm 2 Adaptive n-arv Activation

1 1 1 In])llt: Yisa Weyt X N INATIX of activation mputs, H]lt{‘{'{‘!lf‘l]l ]u;_';]'t.a_
p(z) — .. E E p(Z | 0)?(13)1) p(&?) e p(qpn) . Output width wg, and activation arity n are implied by the shape of Y.
Pa=0 @ 15 a wyy * 2™ matrix of activation parameters.

UH—U '1';"}]_ =0

{-_hlfpllh zis a Wout % 1 vector of activation outputs, consequent I« r_ujr:-.

1: funection z = n_arv(Y . )

Remark: In this algorithm, we index columns of a matrix as

Y [.th v u ] nd A —[ '| il u'_J ] for e {0,1 }
Th IS means any h Ig her-arlty IOgIC 2 Change basis from parameter representations to belief-table logits,

can be built by composing unary [m._@(@;{ 1 1])} e e Keomeker oot
Q functions. Gl

fori=1,2.....ndo
for j=1.2,.... 2" do

(i) . (i—1) i—1)
a; =unary |y;, r1J ]n

end for
\ T: end for
& Return output, = = A", Okay, SO What,s this about?

O l-'t]f-] function
/Jed Duersch, Sandia National Labs 4/14/2022 [ ?




K\»Logical Complexity and Sparsity =

. . . n . .
With the basic construction, then for 2™ parameters, we can access 2% qualitatively

distinct functions. For example, 4-ary logic requires 16 parameters, opening 65,536
truth tables for each output within a single layer.

O
But if we change the parameter 1 1

| B= g
basis, then a powerful property i=1 [—1 1

. Kronecker
emerges. product (power)

Theorem 1 Irrelevant Antecedents and Parameter Zeros. Let p((;, | 1)) represent
l the k™ n-ary belief table. Evaluating the tuple of antecedents, 1), = (V1. Vo, - - - . Vi) s
at any vertex of the hypercube, 1, € {0,1}", gives the probability of the consequent j..
b Let a, € R?" be the row vector of logit representations, i.e. ar; = logit(p(Cy, | V) where
the column index j maps to v, = bits(j), counting from zero. The subset of irrelevant

] so that A=028

antecedents is defined as j
L =Api | p(Cr | Y1) = P(Ci | (Y1 - - B A YIRRRE Vin)) forall P €{0,1}"}.

/) Using the change of basis, A = @B, |if we have ¢;; € I then 0y; =0 for all bit;(j) = 1.

Jed Duersch, Sandia National Labs 4/14/2022 15 ?
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Lower-arity logic embedded in a high-arity activation function retains the same number
of nonzeros, ny,, < 2™, where m is the effective arity. For example, a soft and can be

K\) Reducing Complexity via Effective Arity =
\

parameterized by _ -

1 1 1

1
Binary Representation 1 1 1 1 )
_ _ —1 1 1 1 o o - 2
a = [—Oi — — C]ﬂ] = [T B) B) §] 1 1 1 1 = 0B .
1 -1 -1 1

Writing the same function using arguments 1 and 3 of a ternary function
gives
Ternary Representation

f s=al-} 100 L 10 0B® )i

/Jed Duersch, Sandia National Labs 4/14/2022 16 ?
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Reducing Complexity by Increasing Uncertain

We can also reduce complexity by increasing consequent
uncertainty. This is a foundationally-desirable property for principled
uncertainty quantification in automatic abstract learning algorithms.

Table 1: Representations for Selected Binary Activation Functions

k | Operation | n,. | ero/a | ari/a | aro/a | artt/a || Okt/a | Ok2/a | Oks/a | Oki/a
1 true 1 1 1 1 1 1 0 0 0
2 argq 1 —1 1 —1 1 0 1 0 0
3 notso 1 1 1 —1 —1 0 0 —1 0
4 Xor 1 —1 1 1 —1 0 0 0 -1
5 reluy 2 0 1 0 1 /2 L/a 0 0
6 relu_s 2 1 1 0 0 /9 0| —1/2 0
7 reluy,, 2 0 1 1 0 /9 0 0] —1/2
8 imply 4 1 -1 1 1 Lo | —1/2 /9 L/a
9 imply* 2 0 —1 0 1 0 0 1/2 L/a
10 and 4 —1 —1 —1 1| —1/2 1/2 1/2 1/2
11 or 4 —1 1 1 1 1/2 L/o Lja | —=1/2
12 and* 2 —1 0 0 1 0 1/9 1/2 0

. n . . . .
Counting zeros, there are actually 3% qualitatively distinct functions we can access.

4/14/2022 17
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\Experiment 1 Setup

Ground Truth:
/1 * Fach training case consists of a realization of 32 Bernoulli random variables (inputs).
O * The ground truth is formed by selecting n antecedents (uniformly) as well as a random
truth table.
* We do this for 32 consequents (outputs) independently.
* The dataset consists of applying the ground truth to 6000 input realizations.

l Architecture:
O * If the effective arity of an activation function is m, then hidden layer € may take up to

* We keep enough intermediate neurons for each consequent to have an independent

m? inputs. Thus we need at least L = [log,, n| hidden layers (including output). j

learning pathway.

/Jed Duersch, Sandia National Labs 4/14/2022 18 (F



\Single-Layer High-Arity Logic

\] Our activation functions can learn arbitrary logic in a single layer,

provided the activation arity is greater than or equal to that of the ground
truth

Relu Activation MaxAlL Activation 3-Ary Activation 5-Ary Activation
1 f_||:| ——— [E—— —_— ——
= = =
80 a0
z N
S a0 A S
3 L
=T
E N} — = 70
- == -
20 = B0 _
o - - - - 50— - - ' - - - - - - - ' - - -
MinMax Activation 2-Ary Activation 4-Ary Activation 6-Ary Activation
100 100 — —_ = |- : —_ e
-+ I ] T
i ) ) _]_
O a0 80 ==
1
&
£ a0 80
8 —
< = ==
= 70 70 = e
i T = —
60 &0
b
50 50
2 3 4 5 & 2 3 4 5 6 2 3 4 5 & 2 3 4 5 ]
Ground Truth Arity Ground Truth Arity Ground Truth Arity Ground Truth Arity
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CIFAR-10 CNN, w, =32

\Early Competitive Results

Substituting our activation functions in standard networks with standard training
often outperforms other activation functions. Ternary logic seems to be a
good choice. Yet, we know that quaternary logic subsumes ternary logic,
thus it remains to be understood how to efficiently exploit complexity
suppression durina trainina.

CIFAR-10 CNN, w, = 48

CIFAR-10 CNN, w, =64

73

V2T

=

Test Accuracy
oy | ~
Tul = s
L [H
i

O g
=
|

o
(=]

RelU MaxMin MaxAIL  2-Ary 3-Ary A-Ary
Motivation Function
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RelLU  MaxMin MaxAll  2-Ary 3-Ary 4-Ary

Motivation Funation

ReLU  MaxMin MaxAlL 2-Ary
Motivation Funolion

3-Ary
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d4-Ary
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\Summary o

Belief function provide the mathematically correct domain to evaluate plausible

1 latent relationships between truth claims.
High-arity activation functions allow dimensionality to work in our favor. Although

O the parameters increase approximately lineatly (for n < 6 ), we gain access to 32"
qualitatively distinct functions per channel.

* Our activations are efficient to evaluate and differentiate, passing undamped gradient
dependencies to relevant antecedents and belief table parameters.

l * This framework opens new pathways to extract sophisticated logic from data.
* The concrete connection between sparsity and logical complexity is needed to
D build a framework for complexity-based uncertainty quantification.

Thank you! j

arXiv: 2203.08977
Email: jaduers@sandia.gov
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