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Outline _

* Interatomic potentials as building blocks to approximate potential energy surfaces
» Machine learning interatomic potentials (MLIAP) - a supervised ML problem

» Active learning and need for uncertainty estimation in MLIAP construction

» (Bayesian) MLIAP hinges on proper assumptions for model-data discrepancies

» Embedded model error approach for uncertainty estimation in MLIAPS



Interatomic Potentials

» Object of interest: potential energy E of a system defined by a configuration x,

where x encapsulates coordinates of all atoms in the system

- Typically additive form. E(x) = E, .+ 2 E(x;) + ... using local environments
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Ingredients of MLIAPs (supervised ML problem)

min | |E - £,(2) |
P
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State-of-the-art: largely manual and lacking systematic UQ

MLIAP Construction

4+ Good training set selection: active learning
4+ Fingerprint choice: invariances, symmetries
4+ Functional form choice: model selection

4+ Loss function: regularization, weighting energies and forces

MLIAP Usage

4+ Find reaction pathways, saddle points

4+ Pipe the IAPs to MD simulations



Big Picture
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Equipping parametric fits with uncertainties

Descriptors | Complex (e.g. bispectrum) 333 Simple (e.g. cartesian)
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Equipping parametric fits with uncertainties

g srutiememn, A-P. Thompson et al. “Spectral neighbor analysis method for automated generation of
quantum-accurate interatomic potentials”, Journal of Computational Physics,
wsaanst?  285(15), pp. 316-330, 2015,

Descriptors | Complex (e.g. bispectrum) 333 Simple (e.g. cartesian)
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Spectral nelghbor anaIyS|s potentlal (SNAP) details

A P Thompson et aI “Spectral nelghbor analysis

- : : method for automated generation of

* Uses bispectrum as fingerprints: | | |
quantum-accurate interatomic potentials”,

Journal of Computational Physics,

285(15), pp. 316-330, 2015.
- respects rotational, permutational, translational invariances

- uses hyper spherical harmonics

- Incorporates forces and stresses as well

optimize
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energy and force errors .
material property objective functions _

* Uses linear regression as model form:;
M. Wood and A. Thompson ,
- built on hyper spherical harmonics basis functions “Extending the accuracy of the

: . / SNAP interatomic potential form”,
- generalized to quadratic form as well

Journal of Chemical Physics, 148, 2018.



4+ Given amodel f(x,c) and data y;, = y(x;) , calibrate parameters c.

L Linear model y =~ Ac with coefficients ¢

NN model y &~ NN .(x) with weights/biases ¢

N 2
(f(x €) — )
4+ Bayesian least-squares fit: pcly) x p(y|c)p(c) « HeXp (— J y )

2072
i=1 l

Corresponding data model y; = f(x;, ¢) + ok



Elephant in the room:
model I1Is assumed to be *the* correct model behind data

Model  pgatg err.
Yi :fxia c) + 0,;€; Model # Truth
Truth

lgnoring model error hurts in a few ways:

4+ One gets biased estimates of parameters c (crucial if the model is
physical, and/or c¢ is propagated through other models)

4+ More data leads to overconfident predictions (we become more and more
certain about the wrong values of the data)

+ More evident when there is no (observational/experimental) data error:
e.qg. DFT Is data, and MLIAP is model



Posterior uncertainty does not capture true discrepancy

Synthetic data
y(x) = sin*(2x — 0.3)

Cubic fit

3
y, R Z ¢ B (X)
k=0

More data leads to
overconfident prediction
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Capturlng Model Error In Likelihood (a k.a. Data Model)

= f(x;, c) + 5(xl-) + o€,

External correction

(Kennedy-O’Hagan): - Kennedy, O’Hagan, “Bayesian Calibration of Computer Models”.
J Royal Stat Soc: Series B (Stat Meth), 63: 425-464, 2001.

f( c + 5(x)) + o€,

Internal correction » Allows meaningful usage of calibrated model

(embedded model error): . ‘Leftover’ noise term even with no data error

» Respects physics (not too relevant in our context)

- Sargsyan, Najm, Ghanem, “On the Statistical Calibration of Physical Models”.
Int. J. Chem. Kinet., 47:. 246-276, 2015.

» Sargsyan, Huan, Najm, “Embedded Model Error Representation for Bayesian Model Calibration”.
Int. J. Uncert. Quantif., 9(4): 365-394, 2019.



Embedded Model Error for Linear Regression Models

P
Note:

11 No formal distinction between
=0 iInternal and external corrections,
but internal allows for interpretation

: . . and model-informed error
‘Embed’ uncertainty in

all (or selected) coefficients

/
P P P
yim Y (o + di&) B D aBx) + ) dB(x)E

k=0

Model Model error

(still Gaussian, but correlated,
and model-informed)



Embedded Model Error: likelihood choice is challenging

Classical data model

P
Yy ” Z ¢, B, (x) + o€
k=0
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Embedded Model Error: likelihood choice is challenging

Classical data model N (211::0 ¢ Bi(x) — )
plcly) o [ [exp| -
=1

Z 207
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k=0
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MCMC sampling of ¢
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P P
y; R Z (¢, +d&) B (x) = Z c B (x) + Z d, B (x)¢,
k=0 k=0

k=0
Option 2 (ABC)

N (S0 B =y + () Ty d2BRC) — al Ty eiBix) = yi1

ple.dly) o< | | exp| - >
=1 ¢



1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Pushed forward predictive uncertainty captures

Synthetic data

y(x) = sin*(2x — 0.3)

Classical case

N=100, Poly order=3

® Data
= = True model
— it mean
Fit stdev

~1.00 —-0.75 —-0.50 —-0.25 0.00 0.25 050 0.75 1.00
X

2.5

2.0

1.5

0.5

0.0

Cubic fit

3
y: & Z B (x)
k=0

Model error, IID likelihood

N=100, Poly order=3

1.0

® Data
= = True model
— it mean
Fit stdev

~1.00 —0.75 —-0.50 —-0.25 0.00 0.25 0.50 0.75 1.00

X

Model error, ABC likelihood

N=100, Poly order=3

® Data
L3501 ==, True model
15 - Fit mean
' Fit stdev
1.00
>0.75
0.50 ! 4
0.25;
0.00

~1.00 —0.75 —-0.50 —-0.25 0.00 0.25 0.50 0.75 1.00

X




Uncertainty without model
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» Embedding type: e.q.

P P
additive y; & ) (¢, + d&) By(x) or multiplicative y; & ) (¢, + &) By(x)
k=0 k=0

» Degenerate (Gaussian) likelihoods: resort to
approximate Bayesian computation (ABC) or independent (IID) assumptions

» Difficult posterior PDFs for MCMC, choice of priors for embedding parameters

» Which coefficients to embed the model error in?
» Connect predictive uncertainty and the residual error with an extrapolation metric

» Weighting between energies, forces and stresses

» Major challenge: data sizes are large, linear algebra chokes



» Choose the training samples adaptively

» Achieve greater accuracy with fewer training samples

* |n conventional ML, minimize human effort of labeling images

* For us, minimize the number of ab initio QM calculations

 (aka optimal experimental/computational design)

membership query synthesis

model generates

a query de novo

stream-based selective sampling

sample an model decides to v
————— ) === > : >
instance query or discard C‘>
-

pool-based active learning

sample a large S model selects
pool of instances u the best query

| SR —

[B. Settles, “Active learning literature survey”, Computer Sciences Technical Report 1648,
University of Wisconsin-Madison, 2009]

Detect and query extrapolative (high-uncertainty?)
configurations on-the-fly and get QM data for those.

Key: query strategy, whether to query QM or not. If
such decision can be made reliably, then one does
not need to start with a very good training set.



Labeled Data

Unlabeled
Data Pool




mittee (QBC)

Unlabeled Data Pool

Training ! Prediction
Training : Prediction
Training : Prediction
Training ! Prediction
Training : Prediction
Learners
Label Data Select Data

Uncertainty
Estimation

Testing Error (RMSE)

Start with a training set of N points

Launch K learners, each with fN training points (f=0.8)
Evaluate the learners’ performance at all points in the pool
Select training points from the pool that correspond to the

highest 'disagreement’ and add them to the training set

Griewank with dim = 32

3x10-2{ | = = pa;swe
—&- active
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Generate pool of
unlabeled structures
MD, genetic algo, etc.

Vienna ab initio . _ .
https://github.com/FitSNAP/FitSNAP

L

sim package, vast.at

FitSNAP.py

Initial dataset: Evaluate random
structure -> Energy, structures
forces, stresses

Structures with
Coefficient the most uncertain
Evaluate prediction ) predictions
uncertainty
on unlabeled pool

covariance Cluster and select

structures from pool

Train FitSNAP model
w/ UQ solvers

Run VASP to

Structures: energies, forces, stresses

Add new structures
to training data

calculate properties
on chosen structures



http://vast.at

* Embedded model error for Bayesian inference of MLIAPS

» Leads to data model with baked-in uncertainty
» Meaningful model-error uncertainty capturing the true residual

« Choices to make: priors, likelihoods, MCMC sampler, where to embed...

* |Initiating a workflow for active learning via QBC
» Anchored in uncertainty estimation, even if heuristic

* Promising Initial results

» Choices to make: query strategy, UQ method, metric of ‘newness’...



