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Outline

• Interatomic potentials as building blocks to approximate potential energy surfaces

• Active learning and need for uncertainty estimation in MLIAP construction 

• Machine learning interatomic potentials (MLIAP) - a supervised ML problem 

• (Bayesian) MLIAP hinges on proper assumptions for model-data discrepancies 

• Embedded model error approach for uncertainty estimation in MLIAPs



Interatomic Potentials
• Object of interest: potential energy  of a system defined by a configuration  , E x

   where  encapsulates coordinates of all atoms in the system x

• Typically additive form.     using local environmentsE(x) = Eref + ∑
i

E(xi) + . . .



Ingredients of MLIAPs   (supervised ML problem)

Cartesian Morse

Symm. Fcns


PIP

Bispectrum


ACE

…

SVM

NN

GP


LR Tensor

Lin. Regression


…

min
p

| |E − fp(z) | |

Ab initio Density Functional Theory

include Force, Stress

• Training data  for  and 


• Input representation, aka fingerprint, aka descriptor    


• Parametrized functional form of the approximation class     


• Loss function:                                    + regularization

(xi, Ei) i = 1,…, S xi ∈ R3N

x → z(x)
fp(z)

min
p

S

∑
i=1

[Ei − fp(zi)]2



State-of-the-art: largely manual and lacking systematic UQ 

✦  Good training set selection: active learning


✦  Fingerprint choice: invariances, symmetries


✦  Functional form choice: model selection


✦  Loss function: regularization, weighting energies and forces

✦  Find reaction pathways, saddle points


✦  Pipe the IAPs to MD simulations

MLIAP Construction

MLIAP Usage



Big Picture

Bayesian inference of IAPs, model errors
Active learning



Equipping parametric fits with uncertainties



Equipping parametric fits with uncertainties

SNAP
A.P. Thompson et al. “Spectral neighbor analysis method for automated generation of 

quantum-accurate interatomic potentials”, Journal of Computational Physics, 

285(15), pp. 316-330, 2015.



Spectral neighbor analysis potential (SNAP) details
A.P. Thompson et al. “Spectral neighbor analysis 

method for automated generation of 

quantum-accurate interatomic potentials”, 

Journal of Computational Physics, 

285(15), pp. 316-330, 2015.

•   Uses bispectrum as fingerprints: 


- uses hyper spherical harmonics


- respects rotational, permutational, translational invariances


- incorporates forces and stresses as well 


- tunable complexity/order

•   Uses linear regression as model form: 


- built on hyper spherical harmonics basis functions


- generalized to quadratic form as well

M. Wood and A. Thompson , 

“Extending the accuracy of the 

SNAP interatomic potential form”, 

Journal of Chemical Physics, 148, 2018.

E(x) ≈ ∑
k

ckBk(x)



(Bayesian) Parameter Inference
✦   Given a model    and data   , calibrate parameters  .f(x, c) yi = y(xi) c

Linear model    with coefficients  y ≈ Ac c

NN model    with weights/biases  y ≈ NNc(x) c

✦    Bayesian least-squares fit: p(c |y) ∝ p(y |c)p(c) ∝
N

∏
i=1

exp (−
( f(xi, c) − yi)2

2σ2
i )

yi = f(xi, c) + σiϵiCorresponding data model



                          Elephant in the room:  
model is assumed to be *the* correct model behind data

yi = f(xi, c) + σiϵi

Model

Truth
Model  Truth≠

Ignoring model error hurts in a few ways:

✦ One gets biased estimates of parameters  (crucial if the model is 
physical, and/or  is propagated through other models)


✦ More data leads to overconfident predictions (we become more and more 
certain about the wrong values of the data)

c
c

✦ More evident when there is no (observational/experimental) data error: 
e.g. DFT is data, and MLIAP is model

Data err.



Posterior uncertainty does not capture true discrepancy

yi ≈
3

∑
k=0

ckBk(x)

Cubic fit

More data leads to  
overconfident prediction

y(x) = sin4(2x − 0.3)
Synthetic data



Capturing Model Error in Likelihood (a.k.a. Data Model) 

•  Sargsyan, Najm, Ghanem, “On the Statistical Calibration of Physical Models”. 
Int. J. Chem. Kinet., 47: 246-276, 2015.
•  Sargsyan, Huan, Najm, “Embedded Model Error Representation for Bayesian Model Calibration”. 
Int. J. Uncert. Quantif., 9(4): 365-394, 2019. 

External correction 
(Kennedy-O’Hagan):

Internal correction  
(embedded model error):

•  Kennedy, O’Hagan, “Bayesian Calibration of Computer Models”. 
J Royal Stat Soc: Series B (Stat Meth), 63: 425-464, 2001.

yi = f(xi, c) + δ(xi) + σiϵi

yi = f(xi, c + δ(xi)) + σiϵi

•  Allows meaningful usage of calibrated model

•  ‘Leftover’ noise term even with no data error

•  Respects physics (not too relevant in our context)



Embedded Model Error for Linear Regression Models

yi ≈
P

∑
k=0

ckBk(x) + σiϵi

yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) =
P

∑
k=0

ckBk(x) +
P

∑
k=0

dkBk(x)ξk

‘Embed’ uncertainty in 

all (or selected) coefficients Model error 

(still Gaussian, but correlated, 

and model-informed)

Model

Note: 
No formal distinction between 


internal and external corrections, 

but internal allows for interpretation 


and  model-informed error



Embedded Model Error: likelihood choice is challenging

yi ≈
P

∑
k=0

ckBk(x) + σiϵi

yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) =
P

∑
k=0

ckBk(x) +
P

∑
k=0

dkBk(x)ξk

Classical data model
p(c |y) ∝

N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2

2σ2
i

Embedded model error

MCMC sampling of c

p(c, d |y) ∝
N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2

2∑K
k=0 d2

k Bk(xi)2

MCMC sampling of 

or 


simply optimize the posterior for 

c, d

c, d

Option 1 (IID)



Embedded Model Error: likelihood choice is challenging

yi ≈
P

∑
k=0

ckBk(x) + σiϵi

yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) =
P

∑
k=0

ckBk(x) +
P

∑
k=0

dkBk(x)ξk

Classical data model
p(c |y) ∝

N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2

2σ2
i

Embedded model error

MCMC sampling of c

p(c, d |y) ∝
N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2 + ( ∑P
k=0 d2

k B2
k (xi) − α |∑P

k=0 ckBk(xi) − yi | )2

2ϵ2

Option 2 (ABC)



Pushed forward predictive uncertainty captures  
the true discrepancy from  the data

yi ≈
3

∑
k=0

ckBk(x)

Cubic fit

y(x) = sin4(2x − 0.3)

Synthetic data

Classical case Model error, IID likelihood Model error, ABC likelihood



W-ZrC Dataset

Uncertainty with model error

Uncertainty without model error



Several challenges/choices
• Embedding type: e.g. 


additive  or multiplicative  yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) yi ≈
P

∑
k=0

(ck + ckdkξk) Bk(x)

• Degenerate (Gaussian) likelihoods: resort to 

approximate Bayesian computation (ABC) or independent (IID) assumptions

• Which coefficients to embed the model error in?
• Connect predictive uncertainty and the residual error with an extrapolation metric
• Weighting between energies, forces and stresses

• Difficult posterior PDFs for MCMC, choice of priors for embedding parameters

• Major challenge: data sizes are large, linear algebra chokes



Active Learning: motivation
• Choose the training samples adaptively


• Achieve greater accuracy with fewer training samples 


• In conventional ML, minimize human effort of labeling images 


• For us, minimize the number of ab initio QM calculations


• (aka optimal experimental/computational design)

Detect and query extrapolative (high-uncertainty?) 
configurations on-the-fly and get QM data for those. 


Key: query strategy, whether to query QM or not. If 
such decision can be made reliably, then one does 
not need to start with a very good training set.



Active Learning Loop



Active Learning: Query-by-Committee (QBC)

• Start with a training set of N points 

• Launch K learners, each with fN training points (f=0.8) 

• Evaluate the learners’ performance at all points in the pool 

• Select training points from the pool that correspond to the 


highest ’disagreement’ and add them to the training set 



Active Learning: current workflow

Vienna ab initio 

sim package, vast.at

https://github.com/FitSNAP/FitSNAP

http://vast.at


Summary
• Embedded model error for Bayesian inference of MLIAPs

• Meaningful model-error uncertainty capturing the true residual

• Choices to make: priors, likelihoods, MCMC sampler, where to embed…

• Initiating a workflow for active learning via QBC

• Leads to data model with baked-in uncertainty

• Anchored in uncertainty estimation, even if heuristic
• Promising initial results

• Choices to make: query strategy, UQ method, metric of ‘newness’…


