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Traditional NNs are great at predicting

But not so much at not predicting

▪ Overconfident predictions makes it difficult to trust models

▪ Classification: Tuning of label threshold may help, but there is no other criteria to distinguish     
False Positives from True Positives.

▪ Regression:     How can we establish if a prediction is wrong?

▪ The goal of this is to determine how we can prevent irresponsible predictions?
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Bayesian NNs might provide an answer

Obtain a distribution of weights

▪ Allows for sampling different models, 
resulting in varying predictions

Therefore, obtain a distribution of 
predictions

▪ Standard deviation of prediction →
confidence on prediction
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Bayesian NN



Suppose we want to find a model:

Want to know what the parameters w are:

Need posterior, but Evidence is hard to calculate in high 
dimensions

𝑝 𝑤 𝑥 =
𝑝 𝑥 𝑤 𝑝(𝑤)

𝑝(𝑥)
=
𝑝 𝑥 𝑤 𝑝(𝑤)

∫ 𝑝 𝑥,𝑤 𝑑𝑤

Posterior

Likelihood Prior

Evidence

𝑓(𝑥0, 𝑤) = 𝑥1



Variational Inference 
(VI)

• Use a family of distributions 
𝑞(𝑤) to find the one that 
best approximates the 
posterior 𝑝 𝑤 𝑥

Markov Chain Monte 
Carlo (MCMC)

Pyro library: pyro.ai NumPyro library: 
num.pyro.ai

• Find the posterior 𝑝 𝑤 𝑥 by 
drawing parameter 
samples and testing them 
against the data



Dataset I: Exploratory Dataset

Fit a standard NN using gradient descent

• Naturally, easiest way to separate the data 
set is a line

95% acc

2D mapping of seismic data

(quarry blasts vs earthquakes)

Same architecture as used in previous SSL 
work we’ve done:

• Feedforward Network with 3 layers

• Tanh activations



VI: Quick to train, similar results, more info
𝒩(0,1)

Prior choice matters: 
Larger variance explores a 

larger model space, 
resulting in a wider/less 

“steep” decision boundary

92% acc 88% acc

We can obtain a 
distribution of predictions 
for an input, allowing to 

obtain a mean prediction 
(upper) and a standard 

deviation (lower) 

𝒩(0,5)



Models still seem overconfident though

N(0, 1) N(0, 5)

Notice the lack of uncertainty in data-absent regimes



MCMC: Great and sensible 
results, but costly

• Captures finer details of data distribution

• Only confident where data is existent

• Long training time: 6 hrs to train vs 1 hr for VI

99% acc



Dataset II: Seismic Waveform Spectrogram 
Features

Architecture: VGG Conv NN

• Quarry blasts vs local earthquakes

• Training the whole network in a Bayesian 
framework would present computational and 
engineering complexities

• Use Bayesian Inference on only part of the network

Conv Layers

4096-dim feature space

Feed Forward Layers

Output

Convert these 
set weights into 
a distribution

• Model performance is still on-par with 
original baseline despite transferred 
feature space



Possibility for exploiting other distribution descriptors11

Correctly Predicted
Incorrectly Predicted

MCMC VI



Conclusion and Next Steps

• So far MCMC has generated more powerful models with more nuanced 
characterizations of uncertainty

• The cost is in training time to generate the model (can make or break depending on 
model or data sample size)

• Currently developing a testbed to compare other methods which generate 
distributions of predictions

• MCMC, VI, Bayesian Dropout and Ensemble Methods

• Evaluate performance under a variety of OOD cases

• Simplest case: Artificial sinusoidal wave

• More complexity: Seismic events of different nature (e.g. mining induced events, noise)
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