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But not so much at not predicting

Overconfident predictions makes it difficult to trust models

Classification: Tuning of label threshold may help, but there is no other criteria to distinguish
False Positives from True Positives.

Regression: How can we establish if a prediction is wrong?

The goal of this is to determine how we can prevent irresponsible predictions?

I
> I'Traditional NNs are great at predicting @!
|



: I Bayesian NNs might provide an answer

Traditional NN @
Obtain a distribution of weights

= Allows for sampling different models,
resulting in varying predictions

Therefore, obtain a distribution of
predictions

= Standard deviation of prediction —
confidence on prediction



Suppose we want to find a model:
f (%o, W) = x4

Want to know what the parameters w are:

Posterior \ ‘P/rior
\ p(xw)p(w)  p(x|lw)p(w)

Evidence

Need posterior, but Evidence is hard to calculate in high
dimensions |



I
Variational Inference Markov Chain Monte @!

(VI) Carlo (MCMC()
« Use a family of distributions < Find the posterior p(w|x) by
g(w) to find the one that drawing parameter
best approximates the samples and testing them
posterior p(w|x) against the data
|
Pyro library: pyro.ai NumpPyro library: I
NUM.PvVro.al



Dataset |: Exploratory Dataset
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Same architecture as used in previous SSL 95% acc
work we've done: Fit a standard NN using gradient descent
* Feedforward Network with 3 layers - Naturally, easiest way to separate the data

« Tanh activations setis aline



VI: Quick to train, similar results, more info

20

We can obtain a
distribution of predictions
for an input, allowingto ..
obtain a mean prediction ..
(upper) and a standard
deviation (lower)

15

Prior choice matters:
Larger variance explores a
larger model space,
resulting in a wider/less
“steep” decision boundary




Models still seem overconfident though
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Notice the lack of uncertainty in data-absent regimes



MCMC: Great and sensiblei
results, but costly .

o5

 Captures finer details of data distribution 00
« Only confident where data is existent 05
 Long training time: 6 hrs to train vs 1 hr for VI -10
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Dataset Il: Seismic Waveform Spectrogram @!

Features
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Architecture: VGG Conv NN
* Quarry blasts vs local earthquakes

« Training the whole network in a Bayesian
framework would present computational and
engineering complexities

« Use Bayesian Inference on only part of the network

TPR
=]

07
‘ —— MCMC: 98.17%
VI: 97.25%
—— CNN: 98.04%

Feed Forward Layers

1
«Iit»

Test Set |
03 I

FPR

Convert these «  Model performance is still on-par with
— set weights into original baseline despite transferred
a distribution feature space




1 | Possibility for exploiting other distribution descriptors

3-
4-
c 29 c
; MCMC : Vi
—. S 21
VA, N\
0.4
0.3
Do2| LB e ® Correctly Predicted 7
in e 7 . . tn 0.2
o gf - ® Incorrectly Predicted N
E ]
D.{]-'I . . i . 0.0 1 . . . —
1000 1 1500 9, Ts ] f
750 1 l l
§ -E 1000
500
£ £ _ |
Q 250 E

=]
_,.-r"'

[
=1

Skew
[ 3

1 o] n o
\\ JVL _20- . . l ._ . |

0.0 0.5 10 00 0.2 0 500 1000 25 0 25 0.0 0.5 10 00 0.2 0.4 0 1000
mean std kurtosis skew mean std kurtosis

Skew
o— =
-




« So far MCMC has generated more powerful models with more nuanced
characterizations of uncertainty

« The costis in training time to generate the model (can make or break depending on
model or data sample size)

« Currently developing a testbed to compare other methods which generate
distributions of predictions

- MCMOC, VI, Bayesian Dropout and Ensemble Methods

« Evaluate performance under a variety of OOD cases
« Simplest case: Artificial sinusoidal wave
«  More complexity: Seismic events of different nature (e.g. mining induced events, noise)

I
2 I Conclusion and Next Steps m
I
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