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Overview

Interatomic potential models and UQ

Physical model

Bayesian calibration

Running example — Au-Cu binary alloy systems
— Posterior predictive vs. pushforward posterior distributions highlight
the importance of model error.
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Interatomic potentials and UQ

* Interatomic potentials

— function that takes as input the positions of atoms and returns the energy
of the system
— contains unknown parameters that must be determined empirically
« comparison with experiment

« comparison with higher-fidelity theory
— e.g. density functional theory (DFT)

-
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Interatomic potentials and UQ

* Interatomic potentials

— function that takes as input the positions of atoms and returns the energy
of the system

— contains unknown parameters that must be determined empirically
« comparison with experiment

« comparison with higher-fidelity theory
— e.g. density functional theory (DFT)

* Reliable simulation with interatomic potentials requires
quantified uncertainties™
— for model validation and comparison
— for prediction
— for decision-making “S.L. Frederiksen, K.W. Jacobsen, K.S. Brown, J.P.

Sethna, Phys. Rev. Lett. 93, 165501 (2004)
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RAMPAGE potentials for binary alloy design

Rapid Alloy Method for Producing Accurate General Empirical potentials*

Embedded Atom Model (Finnis-Sinclair type) for systems with two element types: A and B

- atom 7 oftype o € {A
- atom j oftype B € {A

, B}
, B}

energy at atom /

1
B = > Vas(ri) + Fa | D pap(riy)

component functions could
each contribute to £

*L. Ward, A. Agrawal, K.M. Flores, and W. WindI. Rapid production of accurate embedded-
atom method potentials for metal alloys. (2012). arXiv:cond-mat.mtrl-sci/1209.0619
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RAMPAGE potentials for binary alloy design

Rapid Alloy Method for Producing Accurate General Empirical potentials*

Embedded Atom Model (Finnis-Sinclair type) for systems with two element types: A and B

F
A pAA VAA already fitted,
FB PBB VBB presumably valid,

no parameters X
extracted from

existing literature

PBA PAB === modeling and
fitting effort,

VBA — VAB parameters

*L. Ward, A. Agrawal, K.M. Flores, and W. WindI. Rapid production of accurate embedded-
atom method potentials for metal alloys. (2012). arXiv:cond-mat.mtrl-sci/1209.0619
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RAMPAGE potentials for binary alloy design

Rapid Alloy Method for Producing Accurate General Empirical potentials*

» Generate DFT data for a variety of
structures with compositions
ranging from 0% A (100%B) to
100% A (0% B).

» Use data to fit the cross-term
components of the interatomic
potential

O —

increasing composition (%) red

*L. Ward, A. Agrawal, K.M. Flores, and W. Windl. Rapid production of accurate embedded-
atom method potentials for metal alloys. (2012). arXiv:cond-mat.mtrl-sci/1209.0619
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Running example: 5-parameter potential model for Au-Cu

Interatomic potential model

/VAB (7") =D (6—2a(7’—r€q) — 26_O‘(T_T€q)> Morse pair

potential

_ 6 —SA’I" 29 —QSAT'
IOBA(T) r (e ATE ) Voter electron

PAB (7“) = r6 (G_SBT + 296—2537’) densities

N Y
* 5 uncertain parameters: 0 = |r.,, D, o, Sa, SB|
« 102 QOls total

— 17 compositions ranging from 3% Au to 97% Au

— For each composition: lattice parameter, mixing enthalpy, C11, C12, C44,
bulk modulus

« Higher-fidelity DFT data generated for each QOI
— used for fitting the uncertain parameters
uQ22
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Workflow for computing QOls

Step 1: download fitted
potentials for the pure
Fp system, combine with

PBB proposed model
VBB

<_|m

online database / literature

A PBA PAB
F4 VBa = Vag

PAA

i

proposed model, for a given

Vaa parameter vector

uQ22 APRIL 14, 2022 9/39




Workflow for computing QOls

Step 2: compute quantities
of interest using LAMMPS

other inputs:

Fp « structures

PBB * optimization tolerances
+ etc.

VBB

<_|m

online database / literature

A ;’ PBA PAB . 298 2 —_ ‘ ﬂ
Fu VBa = VB R
molecular dynamics
pAA proposed model, for a given simulation s}(;ftware* ;?;‘)2‘:;22
Vaa parameter vector (9 & post
processing

*image from https://www.lammps.org
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Workflow for computing QOls

Step 3: compare to
reference DFT data

B F other inputs:
B . structures
PBB * optimization tolerances
* etc.
VBB
online database / literature

e

L XX ]
oy %
-
LA L L)
L 3
O
W

AI : PBA PAB —_—

LR KX
%%
)

.....’.

_y\ﬁ

Fa Vea = Vas it
molecular dynamics
pAA proposed model, for a given simulation s}(;ftware* ;(r)g;)zlrj:izti
Vaa parameter vector & post
processing

inference

*image from https://www.lammps.org
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Bayesian calibration

finite composition space T € X } notation used to

physical properties 1 € {lata miX7 Clla C127 C44> bulk} cairc]ac:s)z1d(i)f£etr§tr:|)

yi(2)|= fi(w;60) + ei(a)

DFT data simulation

e simulation N

0000

5 Int t i o0e"a00"0 ol ele"e) ale"e0. ‘ol .
0 € R? pnoteerre:ti(.)arlnrlwfn:odeIq : Fadod fz (CC, (9)

molecular dynamics
\_ simulation software* %

*image from https://www.lammps.org
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Bayesian calibration

finite composition space & € X } notation used to

physical properties 1 € {lata miX7 Clla C127 C44> bulk} Q”C])cils%d(;fzfetrstnatl)

yi(2)|= fi(w;60) + ei(x)

DFT data simulation

e (z) ~ N (0, o? fi(x; 9)2) i € {lat, Cq1, Cqa, Cyyq, bulk}

ei(z) ~ N (0,07 fi(2;0)° +7°) i € {mix}

¢ A = [0, logo, logr]
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Bayesian calibration

finite composition space T € X

physical properties 1 € {lat, HliX7 Clla Clg, C44, bU_H{}

notation used to

index different

QOls (102 total)

, C12, Cyq, blﬂk}

,logo, logT]
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Inference strategy

« Standard strategy

1. specify a reasonable prior, e.g. uniform over a plausible range
2. perform MCMC with the full model (i.e. LAMMPS)
3. analyze posterior samples

UQ22 APRIL 14. 2022 15/ 39




Inference strategy

« Challenges
1.
2.

not always clear how to specify prior parameter ranges

simulation runtime depends on the input parameter choices
* single evaluation ~15 minutes — 1hrs+ on a single cpu

regions of the parameter space lead to unphysical results
« unconverged minimizations, flat QOI response, kinks, etc. (next slide)
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snjnpow |ng

lllustrations of challenge #2

2D slices of the
simulation response

uQ22

260

240

220

Cll

200

180

160

surrogate models for this
parameter-to-Qol mapping is
both challenging and inefficient.
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Inference strategy

Strategy
1. Find a good initial box in the parameter space.

(found through optimization or
“expert opinion”)

————————————————————————

________________________
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Inference strategy

Strategy
1. Find a good initial box in the parameter space.

2. Initialize a set of training/test samples.
3. Fit Gaussian process surrogates.

————————————————————————

________________________

LAMMPS evaluations
performed “offline” in a
highly parallelized HPC
setting

UQ22 APRIL 14. 2022 19/39




Inference strategy

hwnp =

Strategy
Find a good initial box in the parameter space.

Initialize a set of training/test samples.
Fit Gaussian process surrogates.
Perform MCMC (with surrogates, uniform prior).

uQ22

————————————————————————
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Inference strategy

o wh =~

Strategy
Find a good initial box in the parameter space.

Initialize a set of training/test samples.

Fit Gaussian process surrogates.

Perform MCMC (with surrogates, uniform prior).
Adapt box based on posterior samples.

uQ22

_______
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Inference strategy

S o

Strategy
Find a good initial box in the parameter space.

Initialize a set of training/test samples.

Fit Gaussian process surrogates.

Perform MCMC (with surrogates, uniform prior).
Adapt box based on posterior samples.
Append posterior samples to training set.

uQ22

LAMMPS evaluations of
new samples performed
“offline” in a highly

parallelized HPC setting

APRIL 14, 2022
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Inference strategy

NoakwN -~

Strategy
Find a good initial box in the parameter space.

Initialize a set of training/test samples.
Fit Gaussian process surrogates.
Perform MCMC (with surrogates, uniform prior).
Adapt box based on posterior samples.
Append posterior samples to training set.
Repeat steps 3-6 until: | §
- : : ' (may also add new
« surrogate error on training/test samples is small . samples)
« posterior samples strictly contained

LAMMPS evaluations of
new samples performed
“offline” in a highly

parallelized HPC setting
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Return of the running example: Au-Cu system

Interatomic potential model
— RAMPAGE potential, single element terms for Au* and Cu*
— 5-parameter cross-term model

102 Qols in total

— 17 compositions ranging from 3% Au to 97% Au

— for each composition: lattice parameter, mixing enthalpy, C11, C12, C44,
bulk modulus

Higher-fidelity DFT data generated for each Qol

— used for fitting the uncertain parameters

MCMC algorithm: Adaptive Metropolis

*X. W. Zhou, R. A. Johnson, H. N. G. Wadley, Phys. Rev. B, 69, 144113 (2004
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Results: posterior marginals

Pair potential

2.6 2.7 1.0

” — Au
= 0.8 — Cu
o
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Q A .
0.2
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0.0
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2.07 2.15
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UQ22 APRIL 14. 2022 25/ 39




Predictive uncertainty

Posterior
predictive

Pushforward
posterior®

DFT data

physical model

yi(2)| = fi(w;0) + ei(x)

p(Ay) >

A = [0, logo, logT]

p(Oly) =

-

\

physical model +
model error

o\

/

~

(&

physical model

~

/

> Popd(¥[y)

:> Pptp(Y]Y)

*Sargsyan, K., H. N. Najm, and R. Ghanem. "On the statistical calibration of physical models." International Journal of Chemical Kinetics 47.4 (2015): 246-276.

uQ22

APRIL 14, 2022

26/ 39




Results: Qol predictions

posterior predictive (left, grey), pushforward posterior (right, blue)

4.2 A

4.0 A

Lattice parameter [A]

> Q-a'&—

¢ MAP
e DFT

0

uQ22

3 6 12 18 25 31 37 43 50 56 62 68 75 81 87 93 96 100

% Gold (Au)
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Results: Qol predictions

posterior predictive (left, grey), pushforward posterior (right, blue)

Mixing enthalpy [eV/atom]

0.04 A

0.02 ~

0.00 »

—0.02 A

—0.04 A

—0.06 A

—0.08 A

¢ MAP
e DFT

0

uQ22

3 6 12 18 25 31 37 43 50 56 62 68 75 81 87 93 96 100

% Gold (Au)
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Results: Qol predictions

posterior predictive (left, grey), pushforward posterior (right, blue)

200 A

190 A

-
[00]
o

=
~
o

\

Ci1 [GPa]

=
()]
o

150 ~

$§$¢¢ P

rPe

$

¢ MAP
e DFT

0
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Results: Qol predictions

posterior predictive (left, grey), pushforward posterior (right, blue)

170 A

160 A

2ttt u

Cio [GPa]

0 3 6 12 18 25 31 37 43 50 56 62 68 75 81 87 93 96 100
% Gold (Au)
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Results: Qol predictions

posterior predictive (left, grey), pushforward posterior (right, blue)

0 3 6 12 18 25 31 37 43 50 56 62 68 75 81 87 93 96 100
% Gold (Au)
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Results: Qol predictions

posterior predictive (left, grey), pushforward posterior (right, blue)

170 A

160 A

-

w1

o
1

Bulk modulus [GPa]

=
N
o

=
w
o

AT

'4

¢ MAP
e DFT

0

uQ22
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Calibration discussion

PPDs

— input: full posterior of model parameters & hyperparameters
— in general, predictive uncertainty covers DFT data

PFPs

— input: marginal posterior of model parameters
— in general, predictive uncertainty does not cover the DFT data

uQ22

W

the level of predictive uncertainty communicated
by just the uncertainty in the model parameters
p(0|y) does not reflect the actual discrepancy
between model predictions and data.

APRIL 14, 2022
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Calibration discussion

PPDs

— input: full posterior of model parameters & hyperparameters
— in general, predictive uncertainty covers DFT data

PFPs

— input: marginal posterior of model parameters
— in general, predictive uncertainty does not cover the DFT data

uQ22

W

the level of predictive uncertainty communicated
by just the uncertainty in the model parameters
p(0|y) does not reflect the actual discrepancy
between model predictions and data.

‘ Challenge for prediction

APRIL 14, 2022
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Examining force predictions

Forces are a Qol not included in the calibration,
and hence may be used to assess the calibrated
potential through comparison with DFT.

o :};. ) ;- N
Predictions are of the PFP-type and based on the marginal posterior p(@]y) ;

* no sensible mechanism for transferring our additive model error from the
calibration Qols to force predictions

- UQ perspective: previous calibration results suggest that the predictive

uncertainties will be underestimated and overconfident
uQ22 APRIL 14, 2022 35/ 39



parity plots for pure elemzents (benchmarks)

Force, DFT [eV/A]

Force, DFT [eV/A]

Au
Cu
0=0.985
rRMSE=0.179
-1 0 1

Force, model [eV/A]

@ Au
A Cu

p=0.993
rRMSE=0.268

Force prediction are lacking

parity plot for 50%-50%

composition

(MAP parameter only)
3

Force, DFT [eV/A]

uQ22

-1 0 1
Force, model [eV/A]

error metrics: correlation coefficient, normalized RMSE.

@ Au
A Cu

p=0.808
rRMSE=0.833

APRIL 14, 2022

2 -1 0 1 2
Force, model [eV/A]
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Pushforward posterior distributions of one error metric:

B 2000k

1.0 A B 300K
********} B 750K

sl ¥ Leeee s
1 0.6 - ¢>
RSP ?%* ’
0.4 - > IS
. bhetes
02} ¢
! Ifor comparison,
0.0 . . . relative error

0 25 50 75 100 range for the
% Au . .
calibration Qols.

The calibrated potential model is not predictive of forces.
These results motivate the inclusion of force data in the calibration Qols.
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* Investigated RAMPAGE potential model for Au-Cu systems

* Implemented a sequential strategy for Bayesian calibration
— iterative inference steps with locally constructed gaussian processes
— guided by an expensive physical model

« Highlighted the role of model error in calibration and prediction
— e.g., differences between PFPs and PPDs.

— results motivate the inclusion of embedded forms of model error that can
be more readily transferred to other prediction settings (such as forces).

* Predictive assessments exposed key limitations of the model
— inadequate force predictions motivate inclusion of force data in training.
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Extra slides
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Simulation workflow

* SQS (compositions)
e numerical tolerances

* etc.

Element A and B Info
9 RAMPAGE
: potential

Figure 1: Simulation workflow for a generic binary system. Here, 6 represents the input parameter vector for the

examined IAP, and f(0) the vector of output Qol values.

uQ22
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Inference strategy

——
/ 3 ()

6,

(a) (b) (c)

Figure 3: Toy example illustrating the movement of H during the inference strategy.
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Forces workflow

DFT-MD » Force

structure, time,
& temperature.

Element A and B Info rescaling

l ,

RAMPAGE
9 potential > LAMMPS — Force

Figure 12: Molecular dynamics simulation workflow for computing forces.
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Force error metrics

b= J€T
— model 2 — DFT 2
Z (ijodel - F ) E (FjDFT - F )
jeT JjET
1 2 (16)
RMSE = T F.model _ F'DFT
iSSP
jeT
RMSE
rRMSE = S =
1 DFT
\/ 71 2 (FP)
jeT
where all summations are taken over time steps, atoms, and components, and
— 1
757 (17)

J =A{(t,a,c) : t € time, a € atoms, c € {z,y,z}}.
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PFPs for correlation coefficients (forces)

1.00 A
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0.90 ~

0.85 A
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Surrogate modeling error

Error

Relative L, error on the posterior samples

10_23
1073 5

10_43

/

Caa

] —— Bulk modulus

Lattice parameter

Mixing enthalpy

C1u1

Ci2 /_/V\

—

3 6 12 18 25 31 37 43 50 56 62 68 75 81 87 93 96

uQ22

% Gold (Au)

\/Z:’; (ysurr (8:) — yLavmps (6:))”

V2 oieq yrammps (0;)2
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Surrogate modeling error

Surrogate mean absolute percentage error on the posterior samples

—— Lattice parameter
0.4 Cu1
— C12
03] — Cas
S — Bulk modulus
o
x 0.2 1
0.1 A
0.0 A

3 6 12 18 25 31 37 43 50 56 62 68 75 81 87 93 96
% Gold (Au)
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To be removed

Thursday, April 14

MS90

Quantifying Predictive Uncertainty with Physics-Informed Machine Learning - Part
I of 1

8:10 AM - 10:10 AM

Room: Augusta F - 7th Floor

For Part |, see MS31

For Part lll, see MS134

Uncertainty quantification plays a central role in verifying and validating
computational models and enabling predictive science. Due to the high
computational cost in modeling and simulation, it is desirable to replace the
underlying physics model with data-driven surrogate models. However, such data-
driven approaches do not capture critical properties and physics. This
minisymposium focuses on the research and development of physics-informed,
physics-constrained, and physics-guided data-driven surrogate models that also
enable uncertainty quantification. We cordially invite researchers to submit work
that involves or is related to computationally efficient, reliable, accurate, physics-
informed, physics-constrained, physics-guided, and data- and domain-informed
surrogate models and methods with an emphasis on uncertainty quantification
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